Log in

Application of Box–Behnken design and desirability function in the optimization of Cd(II) removal from aqueous solution using poly(o-phenylenediamine)/hydrous zirconium oxide composite: equilibrium modeling, kinetic and thermodynamic studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this research work, poly(o-phenylenediamine) was incorporated into the hydrous zirconium oxide matrix to form poly(o-phenylenediamine)/hydrous zirconium oxide composite which is used for the removal of Cd(II) from aqueous solution. The characterization of the material was done based on FTIR, XRD, SEM, and TGA-DTA. The effects of contact time, pH, adsorbent dose, and initial concentration of Cd(II) on the removal of Cd(II) were studied by performing 29 sets of sorption runs using Box–Behnken design combined with response surface methodology (RSM). Various isotherm models were tested to describe the adsorption equilibrium. The adsorption equilibrium data fitted well with Freundlich isotherm model. The maximum adsorption capacity of 66.66 mg g−1 was obtained from Langmuir isotherm. The pseudo-second-order kinetic model described the adsorption kinetics more accurately. Diffusion-based kinetics such as intraparticle diffusion and Bangham’s model suggested that both film and intraparticle pore diffusion were involved in the adsorption process. The Elovich model pointed towards the chemisorption. The investigation of desorption and regeneration suggested that the material can be used as an effective sorbent for removal of Cd(II) from aqueous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ahamd AL, Shahbuddin MMH, Ooi BS, Kusumastuti A (2016) Cadmium removal from aqueous solution by emulsion liquid membrane (ELM): influence of emulsion formulation on cadmium removal and emulsion swelling. Desalin Water Treat 57:28274–28283

    Article  CAS  Google Scholar 

  • Ahsainea HA, Zbairb M, El Haoutia R (2017) Mesoporous treated sewage sludge as outstanding low-cost adsorbent for cadmium removal. Desalin Water Treat 85:330–338

    Article  Google Scholar 

  • Ali AAM, Zaki MI (1998) Fourier-transform laser Raman spectroscopy of adsorbed pyridine and nature of acid sites on calcined phosphate/Zr (OH)4. Colloids Surf A Physicochem Eng Asp 139:81–89

    Article  CAS  Google Scholar 

  • Al-Malack MH, Al-Attas OG, Basaleh AA (2017) Competitive adsorption of Pb2+ and Cd2+ onto activated carbon produced from municipal organic solid waste. Desalin Water Treat 60:310–318

    Article  CAS  Google Scholar 

  • Anwar J, Shafique U, Zaman WU, Salman M, Dar A, Anwar S (2010) Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresour Technol 101:1752–1755

    Article  CAS  Google Scholar 

  • Azouaou N, Mokaddem H (2010) Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. J Hazard Mater 184:126–134

    Article  CAS  Google Scholar 

  • Badruddoza AZM, Shawon ZBZ, Daniel WJD, Hidajat K, Uddin MS (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91:322–332

    Article  CAS  Google Scholar 

  • Bandari F, Safa F, Shariati SH (2015) Application of response surface methodology for optimization of adsorptive removal of Eriochrome Black T using magnetic multi-wall carbon nanotube nanocomposite. Arab J Sci Eng 40:3363–3372

    Article  CAS  Google Scholar 

  • Bernard A (2008) Cadmium and its adverse effects on human health. Indian J Med Res 128:557–564

    CAS  Google Scholar 

  • Boudrahem F, Soualah A, Aissani-Benissad F (2011) Pb (II) and Cd (II) removal from aqueous solution using activated carbon developed from coffee residue activated with phosphonic acid and zinc chloride. J Chem Eng Data 56:1946–1955

    Article  CAS  Google Scholar 

  • Cadaval TRS Jr, Dotto GL, Seus ER, Mirlean N, Pinto LAA (2016) Vanadium removal from aqueous solutions by adsorption onto chitosan. Desalin Water Treat 57:16583–16591

    Article  CAS  Google Scholar 

  • Candioti LV, Zan MMD, Camara MS, Goicoechea HC (2014) Experimental design and multiple response optimization using the desirability function in analytical methods development. Talanta 124:123–138

    Article  CAS  Google Scholar 

  • Cerrahoglu F, Kayan A, Bingol A (2017) New inorganic-organic hybrid materials and their oxides for removal of heavy metal ions: response surface methodology approach. J Inorg Organomet Polym 27:427–435

    Article  CAS  Google Scholar 

  • Chen G, Zeng G, Tang L, Du C, Jiang X, Huang G, Liu H, Shen G (2008) Cadmium removal from simulated wastewater to biomass byproduct of Lentinusedodes. Bioresour Technol 99:7034–7040

    Article  CAS  Google Scholar 

  • Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219

    Article  Google Scholar 

  • Dey RK, Patnaik T, Singh VK, Swain SK, de Melo MA, Airoldi C (2010) Al-centered functionalized inorganic–organic hybrid sorbent containing N and S donor atoms for effective removal of cadmium. Solid State Sci 12:440–447

    Article  CAS  Google Scholar 

  • Ding Y, **g D, Gong H, Zhou L, Yong X (2012) Biosorption of aquatic cadmium (II) by unmodified rice straw. Bioresour Technol 114:20–25

    Article  CAS  Google Scholar 

  • Directive 2006/11/EC of the European Parliament and of Council of 15 February 2006 on pollution caused by certain dangerous substances discharged into the aquatic environment of the community

  • Dou X, Mohan D, Pittman CU Jr, Yang S (2012) Remediating fluoride from water using hydrous zirconium oxide. Chem Eng J 198-199:236–245

    Article  CAS  Google Scholar 

  • Dubey A, Mishra A, Singhal S (2014) Application of dried plant biomass as novel adsorbent for removal of cadmium from aqueous solution. Int J Environ Sci Technol 11:1043–1050

    Article  CAS  Google Scholar 

  • Farasati M, Haghighi S, Boroun S (2016) Cd removal from aqueous solution using agricultural wastes. Desalin Water Treat 57:1116–11172

    Article  CAS  Google Scholar 

  • Garg U, Kaur MP, Jawa GK, Sud D, Garg VK (2008) Removal of cadmium (II) from aqueous solutions by adsorption on agricultural wastes biomass. J Hazard Mater 154:1149–1157

    Article  CAS  Google Scholar 

  • Gavris G, Caraban A, Stanarel O, Badea GE (2013) Cadmium ions recovery by chemicals precipitation method from residual solutions of galvanic plating, J. Sustainable Energy 4:1–5

    Google Scholar 

  • Gaya UI, Otene E, Abdullah AH (2015) Adsorption of aqueous Cd (II) and Pb (II) on activated carbon nanopores prepared by chemical activation of doum palm shell. Springer Plus 4:458. https://doi.org/10.1186/s40064-015-1256-4

    Article  CAS  Google Scholar 

  • Georgescu I, Mureseanu M, Carja G, Hulea V (2013) Adsorptive removal of cadmium and copper from water by mesoporous silica functionalized with N-( aminothioxomethyl)-2-thiophen carboxamide. J Environ Eng 139:1285–1296

    Article  CAS  Google Scholar 

  • Gupta VK, Singh P, Rahman N (2005) Synthesis, characterization and analytical application of zirconium(IV) selenoiodate, a new cation exchanger. Anal Bioanal Chem 381:471–476

    Article  CAS  Google Scholar 

  • Hasanzadeh R, Moghadam PN, Bahri-Laleh N, Sillanpaa M (2017) Effective removal of toxic metal ions from aqueous solutions: 2-bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer @ Fe3O4 nanocomposites. J Colloid Interface Sci 490:727–746

    Article  CAS  Google Scholar 

  • Heffron J, Marhefke M, Mayer BK (2016) Removal of trace metal concentration from potable water by electrocoagulation. Sci Rep 6:28478. https://doi.org/10.1038/Sreo28478

    Article  CAS  Google Scholar 

  • Hegazi HA (2013) Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J 9:276–282

    Article  Google Scholar 

  • Hema M, Srinivasan K (2011) Removal of cadmium (II) from wastewater using activated carbon prepared from agro industrial by products. J Environ Sci Eng 53:387–396

    CAS  Google Scholar 

  • Hossain MA, Ngo HH, Guo W (2013) Introductory of Microsoft Excel SOLVER function-spreadsheet method for isotherm and kinetics modelling of metal biosorption in water and wastewater. J Water Sustainability 3:223–227

    CAS  Google Scholar 

  • Huang M-R, Li X-G, Yang Y (2001) Oxidative polymerization of o-phenylenediamine and pyrimidylamine. Polym Degrad Stab 71:31–38

    Article  CAS  Google Scholar 

  • Husein DZ, Aazam E, Battia M (2017) Adsorption of cadmium (II) onto watermelon rind under microwave radiation and application into surface water from Jeddah, Saudi Arabia. Arab J Sci Eng 42:2403–2415

    Article  CAS  Google Scholar 

  • Ichinohe D, Saitoh N, Kise H (1998) Oxidative polymerization of phenylenediamines in reversed micelles. Macromol Chem Phys 199:1241–1245

    Article  CAS  Google Scholar 

  • Inyinbor AA, Adekola FA, Olatunji GA (2016) Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour Ind 15:14–27

    Article  Google Scholar 

  • IS 10500 (1992) Drinking water specification (Reaffirmed 1993); http://www.hppcb.nic.in/ElAsorang/spec.pdf; 8.9.2007

  • Jain M, Garg VK, Kadirvelue K (2011) Investigation of Cr (VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology. Bioresour Technol 102:600–605

    Article  CAS  Google Scholar 

  • Javadian H, Ghorbani F, Tayebi H, Hosseini SM (2015) Study of the adsorption of cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arab J Chem 8:837–849

    Article  CAS  Google Scholar 

  • Jimoh AA, Adebayo GB, Otum KO, Ajeboy AT, Bale AT, Jamiu W, Alao FO (2015) Sorption study of Cd (II) from aqueous solution using activated carbon prepared from Vitellaria paradoxa shell. J Bioremed Biodeg 6:288. https://doi.org/10.4172/2155-6199.1000288

    Article  CAS  Google Scholar 

  • Kakaei A, Kazemeini M (2016) Removal of Cd (II) in water sample using modified magnetic iron oxide nanoparticles. Iranian J Toxicol 10:9–14

    CAS  Google Scholar 

  • Karthik R, Meenakshi S (2015) Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem Eng J 263:168–177

    Article  CAS  Google Scholar 

  • Karunanayake AJ, Todd OA, Crowley M, Ricchetti L, Pittman CU Jr, Anderson R, Mohan D (2018) Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. Chem Eng J 331:480–491

    Article  CAS  Google Scholar 

  • Kayan A, Arican MO, Boz Y, Ay U, Bozbas SK (2014) Novel tyrosine-containing inorganic-organic hybrid adsorbent in removal of heavy metal ions. J Environ Chem Eng 2:935–942

    Article  CAS  Google Scholar 

  • Kim E-J, Lee C-S, Chang Y-Y, Chang Y-S (2013) Hierarchically structured manganese oxide-coated maneticnano composites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5:9628–9634

    Article  CAS  Google Scholar 

  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96:1518–1521

    Article  CAS  Google Scholar 

  • Kong Q, **e B, Preis S, Hu Y, Wu H, Wei C (2018) Adsorption of Cd2+ by ion –imprinted thiol-functionalized polymer in competition with heavy metal ions and organic acids. RSC Adv 8:8950–8960

    Article  CAS  Google Scholar 

  • Krika F, Azzouz N, Ncibi MC (2016) Adsorptive removal of cadmium from aqueous solution by cork biomass: equilibrium, dynamic and thermodynamic studies. Arab J Chem 9:51077–51083

    Article  CAS  Google Scholar 

  • Lin X, Burns RC, Lawrance GA (2005) Heavy metal ions wastewater: the effect of electrolyte composition on the precipitation of Cd (II) using lime and magnesia. Water Air Soil Pollut 165:131–152

    Article  CAS  Google Scholar 

  • Liu F, ** Y, Liao H, Cai L, Tong M, Hou Y (2013) Facile self-assembly synthesis of titanate / Fe3O4 nanocomposites for the efficient removal of Pb2+from aqueous systems. J Mater Chem A 1:805–813

    Article  CAS  Google Scholar 

  • Liu Z, Li X, Zhan P, Hu F and Ye X (2018) Removal of cadmium and copper from water by magnetic adsorbent of PFM: adsorption performance and microstructural morphology, Sep Purif Technol, (in press). https://doi.org/10.1016/j.seppur.2018.06.007

  • Mahmoud ME, Abdou AE, Ahmad SB (2016) Conversion of waste Styrofoam into engineered adsorbents for efficient removal of cadmium, lead and mercury from water. ACS Sustain Chem Eng 4:819–827

    Article  CAS  Google Scholar 

  • Maleki A, Mahvi AH, Zazouli MA, Izanloo H, Barati AH (2011) Aqueous cadmium removal by adsorption on barley hull and barley hull ash. Asian J Chem 23:1373–1376

    CAS  Google Scholar 

  • Markandeya, Shukla SP, Kisku GC (2015) Linear and nonlinear kinetic modelling for adsorption of disperse dye in batch process. Res J Environ Toxicol 9:320–331

    Article  CAS  Google Scholar 

  • Mehdinia A, Sehegfti S, Shemirani F (2015) Removal of lead (II), copper (II) and zinc (II) ions from aqueous solutions using magnetic amine-functionalized mesoporous silica nanocomposites. J Braz Chem Soc 26:2249–2257

    CAS  Google Scholar 

  • Milonjic SK (2007) A consideration of the correct calculation of thermodynamic parameters of adsorption. J Serb Chem Soc 72:1363–1367

    Article  CAS  Google Scholar 

  • Mishra SP, Singh VK, Tiwari D (1996a) Efficient removal of zinc ions from aqueous solution by hydrous zirconium oxide. J Radioanal Nucl Chem 210:207–217

    Article  CAS  Google Scholar 

  • Mishra SP, Singh VK, Tiwari D (1996b) Radiotracer technique in adsorption study: part XIV. Efficient removal of mercury from aqueous solutions by hydrous zirconium oxide. Appl Radiat Isot 47:15–21

    Article  CAS  Google Scholar 

  • Mishra SP, Singh VK, Tiwari D (1997) Inorganic particulates in removal of heavy metal ions. Efficient removal of cadmium ions from aqueous solution by hydrous zirconium oxide. Radiochim Acta 76:97–101

    Article  CAS  Google Scholar 

  • Mohammed RR (2012) Removal of heavy metals from wastewater using black teawaste. Arab J Sci Eng 37:1505–1520

    Article  CAS  Google Scholar 

  • Mohanapriya T, Kumar PE (2016) Removal of cadmium (II) from aqueous solution on activated carbon prepared from Typha angustata L: equilibrium and kinetic studies. Int J Sci Res Publ 6:192–203

    Google Scholar 

  • Mopoung R, Kengkhetkit N (2016) Lead and cadmium removal efficiency from aqueous solution by NaOH treated pineapple waste. Int J Appl Chem 12:23–35

    Google Scholar 

  • Moubarik A, Grimi N (2015) Valorization of olive stone and sugar cane bagasse by-products as biosorbents for the removal of cadmium from aqueous solution. Food Res Int 73:169–175

    Article  CAS  Google Scholar 

  • Mourabet M, El-Rhilassi A, El-Boujaady H, Bennani-Ziatni M, El-Hamri R, Taitii A (2012) Removal of fluoride from aqueous solution by adsorption on apatitic tricalcium phosphate using Box-Behnken design and desirability function. Appl Surf Sci 258:4402–4410

    Article  CAS  Google Scholar 

  • Muthirulan P, Kannan N, Meenakshsisundaram M (2013) Synthesis and corrosion protection properties of poly(o-phenylenediamine) nanofibers. J Adv Res 4:385–392

    Article  CAS  Google Scholar 

  • Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds—part A: theory and applications in inorganic chemistry, 6th edn. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  • Phuengprasop T, Sittiwong J, Unob F (2011) Removal of heavy metal ions by iron oxide coated sewage sludge. J Hazard Mater 186:502–507

    Article  CAS  Google Scholar 

  • Rahman N, Haseen U (2014) Equilibrium modeling, kinetic and thermodynamic studies on adsorption of Pb (II) by a hybrid inorganic-organic material :polyacrylamide zirconium (IV) iodate. Ind Eng Chem Res 53:8198–8207

    Article  CAS  Google Scholar 

  • Rahman N, Haseen U (2015) Development of polyacrylamide chromium oxide as a new sorbent for solid phase extraction of As (III) from food and environmental water samples. RSC Adv 5:7311–7323

    Article  CAS  Google Scholar 

  • Rahman N, Khan MF (2016) Nitrate removal using poly-o-toluidine zirconium (IV) ethylenediamine as adsorbent: batch and fixed-bed column adsorption modeling. J Water Process Eng 9:254–266

    Article  Google Scholar 

  • Rahman N, Nasir M (2017) Development of Zr(IV) – doped polypyrrole/zirconium(IV) iodate composite for efficient removal of fluoride from water environment. J Water Process Eng 19:172–184

    Article  Google Scholar 

  • Rahman N, Haseen U, Khan MF (2015) Cyclic tetra [(indolyl)-tetramethyl]-diethane-1,2-diamine (CTet) impregnated hydrous zirconium oxide as a novel hybrid material for enhanced removal of fluoride from water samples. RSC Adv 5:39062–39074

    Article  CAS  Google Scholar 

  • Rahmanidn B, Pakizeh M, Maskooki A (2012) Optimization of lead removal from aqueous solution by micellar-enhanced ultrafiltration process using Box-Behnken design. Korean J Chem Eng 29:804–811

    Article  CAS  Google Scholar 

  • Rao KS, Mohapatra M, Anand S, Venkateswarlu P (2010) Review on cadmium removal from aqueous solutions. Int J Eng Sci Technol 2:81–103

    Google Scholar 

  • Rocha CG, Zaia DAM, Alfaya RVDS, Alfaya AADS (2009) Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents. J Hazard Mater 166:383–388

    Article  CAS  Google Scholar 

  • Rodriguez LA, Maschio LJ, da Silva RE, da Silva MLCP (2010) Adsorption of Cr(VI) from aqueous solution by hydrous zirconium oxide. J Hazard Mater 173:630–636

    Article  CAS  Google Scholar 

  • Sall ML, Diaw AKD, Sall DG, Biraud AC, Oturan N, Oturan MA, Fourdrin C, Huguenot D, Aason JJ (2018) Removal of lead and cadmium from aqueous solution by using 4-amino-3-hydroxynaphthalene sulfonic acid-doped polypyrrole films. Environ Sci Pollut Res 25:8581–8591

    Article  CAS  Google Scholar 

  • Salmani MH, Davoodi M, Ehrampoush MH, Ganeian MT, Fallahzadah MH (2013) Removal of cadmium (II) from simulated wastewater by ion floatation technique. Iranian J Environ Health Sci Eng 10:16. https://doi.org/10.1186/735-2746-10-16.

    Article  Google Scholar 

  • Samanta S, Roy P, Kar P (2017) Influence of structure of poly (o-phenylenediamine) on the do** ability and conducting property. Ionics 23:937–947

    Article  CAS  Google Scholar 

  • Seredych M, Bandosz TJ (2010) Effect of surface features on adsorption of SO2 on graphite oxide/Zr (OH)4 composites. J Phys Chem C 114:14552–14560

    Article  CAS  Google Scholar 

  • Singanan M (2011) Removal of lead (II) and cadmium (II) from wastewater using activated biocarbon. Sci Asia 37:115–119

    Article  CAS  Google Scholar 

  • Singh P, Rawat JP, Rahman N (2003) Synthesis and characterization of zirconium (IV) iodovanadate and its use as electron exchanger. Talanta 59:443–452

    Article  CAS  Google Scholar 

  • Singh R, Chadetrik R, Kumar R, Bishnoi K, Bhatia D, Kumar A, Bishnoi NR, Singh N (2010) Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherm and thermodynamics modelling. J Hazard Mater 174:623–634

    Article  CAS  Google Scholar 

  • Socrates G (1980) Infrared Characteristic Group Frequencies. John Wiley & Sons, Ltd., Bristol, p 53:54,84

    Google Scholar 

  • Soenarjo S, Wijaya C (2006) Adsorption behaviour of cadmium (II) on hydrous oxide inorganic resins. J Sains dan Teknologi Nuklir, Indonesia 7:131–145

    Google Scholar 

  • Soltani R, Dinari M, Mohammadnezhad G (2018) Ultrasonic-assisted synthesis of novel nanocomposite of poly(vinyl alcohol) and amino-modified MCM-41: a green adsorbent for Cd(II) removal. Ultrason Sonochem 40:533–542

    Article  CAS  Google Scholar 

  • Tak B-Y, Tak B-S, Park Y-J, Yoon Y-H (2015) Optimization of color and COD removal from livestock wastewater by electrocogulation process: application of Box-Behnken design (BBD). J Ind Eng Chem 28:307–315

    Article  CAS  Google Scholar 

  • Talebi M, Abbasizadeh S, Ali R (2017) Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber. Process Saf Environ Prot 109:340–356

    Article  CAS  Google Scholar 

  • Tehrani MM, Abbasizadeh S, Alamdari A (2017) Prediction of simultaneous sorption of copper (II), cobalt (II) and zinc (II) contaminants from water system by a novel multi-functionalized zirconia nanofiber. Desalin Water Treat 62:340–417

    Google Scholar 

  • US Environmental Protection Agency, International risk information system (IRIS) (1999) On cadmium. National centre for environmental assessment, Office of research and development, Washington, DC

    Google Scholar 

  • Vekateswarlu S, Yoon M (2015) Rapid removal of cadmium ions using green-synthesized Fe3O4 nanoparticles capped with diethyl-4-(4amino-5-mercapto-4 H-1,2,4,-triazol-3-yl) phenyl phosphonate. RSC Adv 5:65444–65453

    Article  CAS  Google Scholar 

  • Venkatesan G, Senthilnthan U (2013) Adsorption batch studies on the removal of cadmium using wood of Derris Indica based activated carbon. Res J Chem Environ 17:19–24

    CAS  Google Scholar 

  • Venkateswarlu S, Yoon M (2015) Rapid removal of cadmium ions using green-synthesized Fe3O4 nanoparticles capped with diethyl-4-(4amino-5-mercapto-4H-1,2,4-triazol-3yl) phenyl phosphonate. RSC Adv 5:65444–65453

    Article  CAS  Google Scholar 

  • Vilayatkar ND, Rahangdale PK, Donadkar DK (2016) Adsorption of cadmium (II) from solution onto activated carbon prepared from Madhucalongifolia fruit shell. Int J Adv Res 4:1360–1364

    CAS  Google Scholar 

  • Wang C-W, Baroord JP, Mckay G (2014) Kinetic and equilibrium studies for the removal of cadmium ions by ion exchange resin. J Environ Chem Eng 2:698–707

    Article  CAS  Google Scholar 

  • Wang K, Zhao J, Li H, Zhang X, Shi H (2016) Removal of cadmium (II) from aqueous solution by granular activated carbon supported magnesium hydroxide. J Taiwan Inst Chem Eng 6:287–291

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–59

    Google Scholar 

  • World Health Organization (2011) Cadmium in drinking-water, background document for development of WHO Guidelines for drinking-water quality

  • Wu F-C, Tseng R-L, Juang R-S (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150:366–373

    Article  CAS  Google Scholar 

  • Xu L, Zhuang Z (2014) Removal of cadmium ions from aqueous solution using chemically modified peanut shell. J Chem Pharm Res 6:646–653

    Google Scholar 

  • Zhang JY, Wei Y, Li H, Zeng EY, You J (2017) Application of Box-Behnken design to optimize multi-solid phase extraction for trace neonicotinoids in water containing high level of matrix substances. Talanta 170:392–398

    Article  CAS  Google Scholar 

  • Zheng L, Meng P (2016) Preparation, characterization of corn stalk xanthates and its feasibility for Cd (II) removal from aqueous solution. J Taiwan Inst Chem Eng 58:391–400

    Article  CAS  Google Scholar 

  • Zong E, Wei D, Wan H, Zheng S, Xu Z, Zhu D (2013) Adsorption removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide. Chem Eng J 221:193–203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to UGC (DRS-II) and DST (FIST and PURSE Phase II) for providing necessary research facilities. One of the authors (Mohd Nasir) is thankful to UGC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafisur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Electronic supplementary material

ESM 1

(DOCX 256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, N., Nasir, M. Application of Box–Behnken design and desirability function in the optimization of Cd(II) removal from aqueous solution using poly(o-phenylenediamine)/hydrous zirconium oxide composite: equilibrium modeling, kinetic and thermodynamic studies. Environ Sci Pollut Res 25, 26114–26134 (2018). https://doi.org/10.1007/s11356-018-2566-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2566-1

Keywords

Navigation