Log in

Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies

  • Process Engineering for Pollution Control and Waste Minimization
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Recycling cotton waste derived from the textile industry was used as a low-cost precursor for the elaboration of an activated carbon (AC) through carbonization and zinc chloride chemical activation. The AC morphological, textural, and surface chemistry properties were determined using different analytical techniques including Fourier transform infrared, temperature programmed desorption-mass spectroscopy, nitrogen manometry and scanning electron microscopy. The results show that the AC was with a hollow fiber structure in an apparent diameter of about 6.5 μm. These analyses indicate that the AC is microporous and present a uniform pore size distributed centered around 1 nm. The surface area and micropore volume were 292 m2.g−1 and 0.11 cm3.g−1, respectively. Several types of acidic and basic oxygenated surface groups were highlighted. The point of zero charge (pHPZC) of theca was 6.8. The AC performance was evaluated for the removal of Alizarin Red S (ARS) from aqueous solution. The maximum adsorption capacity was 74 mg.g−1 obtained at 25 °C and pH = 3. Kinetics and equilibrium models were used to determine the interaction nature of the ARS with the AC. Statistical tools were used to select the suitable models. The pseudo-second order was found to be the most appropriate kinetic model. The application of two and three isotherm models shows that Langmuir–Freundlich (n = 0.84, K = 0.0014 L.mg−1, and q = 250 mg.g−1) and Sips (n = 0.84, K = 0.003 L.mg−1, and q = 232.6 mg.g−1) were the suitable models. The results demonstrated that cotton waste can be used in the textile industry as a low-cost precursor for the AC synthesis and the removal of anionic dye from textile wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albadarin AB, Mangwandi C (2015) Mechanisms of Alizarin Red S and methylene blue biosorption onto olive stone by-product: isotherm study in single and binary systems. J Environ Manag 164:86–93

    Article  CAS  Google Scholar 

  • Ali M, Courtenay P (2014) Evaluating the progress of the UK’s material recycling facilities: a mini review. Waste Manag Res 12:1149–1157

    Article  Google Scholar 

  • Almasian A, Olya ME, Mahmoodi NM (2015) Synthesis of polyacrylonitrile/polyamidoamine composite nanofibers using electrospinning technique and their dye removal capacity. J Taiwan Inst Chem Eng 49:119–128

    Article  CAS  Google Scholar 

  • Altıntıg E, Arabacı G, Altundag H (2016) Preparation and characterization of the antibacterial efficiency of silver loaded activated carbon from corncobs. Surface & Coatings Technology. doi:10.1016/j.surfcoat.2016.06.077

    Google Scholar 

  • Antal MJ (1984) Biomass pyrolysis, in K.W. Boer and J.A. Duffy (Eds.). Advances in Solar Energy. (3), 175–255

  • Azquez BL, Calero G, Ronda M, Tenorio A, Martín-Lara G (2014) Study of kinetics in the biosorption of lead onto native and chemically treated olive stone. J Ind Eng Chem 20:2754–2760

    Article  Google Scholar 

  • Bazrafshan A, hajati S, Ghaedi M (2015) Regenerable Zn(OH)2 nanoparticle-loaded activated carbon for the ultrasound-assisted removal of malachite green. Optimization, isotherm and kinetics, RSC Adv 5:79119–79128

    CAS  Google Scholar 

  • Belhechemi M, Jeguirim M, Limousy L, Addoun F (2014) Comparison of NO2 removal using date pits activated carbon and modified commercialized activated carbon via different preparation methods: effect of porosity and surface chemistry. Chem Eng J 253:121–129

    Article  Google Scholar 

  • Ben Hamissa AM, Lodi A, Seffen M, Finocchio E, Botter R, Converti A (2010) Sorption of Cd(II) and Pb(II) from aqueous solutions onto Agave americana fibers. Chem Eng J 159:67–74

    Article  CAS  Google Scholar 

  • Crini G (2008) Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigments 77:415–426

    Article  CAS  Google Scholar 

  • Dongqing Z, **xue L, Zarraz MP, Richard M, Yu L, Soon K, Wun JN (2016) Characterization of microbial communities in wetland mesocosms receiving caffeine-enriched wastewater. Environ Sci Pollut Res 23:1–14

    Article  Google Scholar 

  • Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev 60:235–241

    Article  CAS  Google Scholar 

  • Ekrami E, Dadashian F, Soleimani M (2014) Waste cotton fibers based activated carbon: optimization of process and product characterization. Fibers and Polymers 15:1855–1864

    Article  CAS  Google Scholar 

  • Fadi AM, Bernard L (2009) Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 2: kinetic parameters. J Hazard Mater 170:754–762

    Article  Google Scholar 

  • Fan L, Zhang y, Li X, Luo L, Lu F, Qiu H (2012) Removal of Alizarin Red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules. Colloids Surf B: Biointerfaces 91:250–257

    Article  CAS  Google Scholar 

  • Fayazi M, Ghanei-Motlagh M, Taher MA (2015) The adsorption of basic dye (Alizarin Red S) from aqueous solution onto activated carbon-Fe2O3 nano-composite: kinetic and equilibrium studies. Mater Sci Semicond Process 40:35–43

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) An overview of dye removal via activated carbon adsorption process. Desalin and Water Treat 19:255–274

    Article  CAS  Google Scholar 

  • Freundlich H (1906) Over the adsorption in solution. Z Phys Chem 57:384–470

    Google Scholar 

  • Fritz W, Schluender EU (1974) Simultaneous adsorption equilibrium of organic solutes in dilute aqueous solution on activated carbon. Journal of Chemical Engineering Science 29:279–1282

    Article  Google Scholar 

  • Gautam RK, Mudhoo A, Chattopadhyaya MC (2013) Kinetic, equilibrium, thermodynamic studies and spectroscopic analysis of Alizarin Red S removal by mustard husk. J Environ Chem Eng 1:1283–1291

    Article  CAS  Google Scholar 

  • Ghouma I, Jeguirim M, Dorge S, Limousy L, Matei GC, Ouederni A (2015) Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chimie 18:63–74

    Article  CAS  Google Scholar 

  • Gimbert F, Crini NM, Renault F, Badot PM, Crini G (2008) Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J Hazard Mater 157:34–46

    Article  CAS  Google Scholar 

  • Guo YP, Rockstraw DA (2006) Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon 44:1464–1475

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90:2313–2342

    Article  CAS  Google Scholar 

  • Gupta VK, Gupta b, Rastogi A, Agarwal S, Nayak A (2011) A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye–Acid Blue 113. J Hazard Mater 186:891–901

    Article  CAS  Google Scholar 

  • Gurudatt K, Tripathi VS, Sen AK (1999) Adsorbent carbon fabrics: new generation armour for toxic chemicals. Def Sci J 47:239–250

    Article  Google Scholar 

  • Han X, Wang W, Ma X (2011) Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. Chem Eng J 171:1–8

    Article  CAS  Google Scholar 

  • Haule LV, Carr MC, Rigout M (2014) Investigation into the removal of an easy-care crosslinking agent from cotton and the subsequent regeneration of lyocell-type fibres. Cellulose 21(3):2147–2156

    Article  CAS  Google Scholar 

  • Haule LV, Carr CM, Rigout M (2016) Investigation into the supramolecular properties of fibres regenerated from cotton based waste garments. Carbohydr Polym 144:131–139

    Article  CAS  Google Scholar 

  • Hinz C (2001) Description of sorption data with isotherm equations. Geoderma 99:225–243

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Javad Z, Neda A, Maryam B, Gholamhasan A (2014) Multi-response optimization using Taguchi design and principle component analysis for removing binary mixture of alizarin red and alizarin yellow from aqueous solution by nano c-alumina. Spectrochim Acta A Mol Biomol Spectrosc 126:291–300

    Article  Google Scholar 

  • Jie C, Xunwen S, Canhui L, Zehang Z, ** Y (2016) Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites. Carbohydrate Polymers. In Press

  • Jieying Z, Quanlin Z, Zhengfang Y (2014) Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Appl Surf Sci 299:86–91

    Article  Google Scholar 

  • Kennedy LJ, Vijaya JJ, Kayalvizhi K, Sekaran G (2007) Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process. Journal of Chemical Engineering 132:279–287

    Article  CAS  Google Scholar 

  • Kesraoui A, Moussa A, Ben Ali G, Seffen M (2015) Biosorption of alpacide blue from aqueous solution by lignocellulosic biomass: Luffa cylindrica fibers. Environmental Science and Pollution Research, 1–9

  • Koopal LK, van Riemsdijk WH, de Wit JCM, Benedetti MF (1994a) Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces. J Colloid Interface Sci 166:51–60

    Article  CAS  Google Scholar 

  • Kumar DB, Smaïl K (2010) Étude cinétique et thermodynamique de l’adsorption d’un colorant basique sur la sciure de Bois. Revue des sciences de l'eau Journal of Water Science 24:131–144

    Google Scholar 

  • Lagergren S (1998) About the theory of so-called adsorption of soluble substances. K Svenska Vetenskapsakad Handl 24:1–39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Li FT, Yang H, Zhao Y, Xu R (2007) Novel modification pectin for heavy metal adsorption. Chin Chem Lett 18:325–328

    Article  CAS  Google Scholar 

  • Liang S, Guo X, Feng N, Tian Q (2010) Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbent. J Hazard Mater 174:756–762

    Article  CAS  Google Scholar 

  • Liou TH (2010) Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem Eng J 158:129–142

    Article  CAS  Google Scholar 

  • Loelovich M (2008) Cellulose as a nanosructured polymer: a short review. Bioressources 3:1403–1418

    Google Scholar 

  • Marchon B, Carrazza J, Heinemann H, Somorjai GA (1988) TPD and XPS studies of O2, CO2, and H2O adsorption on clean polycrystalline graphite. Carbon 26:507–514

    Article  CAS  Google Scholar 

  • Mardini FA, Legube B (2009) Journal of hazardous materials. J Hazard Mater 170:744–753

    Article  Google Scholar 

  • Martynas T, Edvinas K, Viktoras R, Rainer H, Violeta K, Inga S, Dainius M (2013) Chemical degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment. Engineering Journal 229:9–19

    Google Scholar 

  • Mehrorang G, Sh H, Syamak NK, Reza S, Ali D, Behnaz B (2012) Comparison of silver and palladium nanoparticles loaded on activated carbon for efficient removal of methylene blue: kinetic and isotherm study of removal process. Powder Technol 228:18–25

    Article  Google Scholar 

  • Nasiri Azad F, Ghaedi M, Ddashtian K, Montazerozohori M, Hajati S, Alipanahpour E (2015) Preparation and characterization of MWCNTs functionalized by N-(3-Nitrobenzylidene)-N′-trimethoxysilylpropyl-ethane-1, 2-diamine for the removal of aluminum (III) ions via complexation with ferrochrome cyanine R: spectrophotometric detection and optimization. RSC Adv 5:61060–61069

    Article  CAS  Google Scholar 

  • Ncibi MC, Mahjoub B, Seffen M (2006) Studies on the biosorption of textile dyes from aqueous solutions using Posidonia oceanica (L.) leaf sheath fibres. Adsorpt Sci Technol 24:461–473

    Article  CAS  Google Scholar 

  • Otake Y, Jenkins RG (1993) Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment. Carbon 31:109–121

    Article  CAS  Google Scholar 

  • Ouchi A, Toida T, Kumaresan S, Ando W, Kato J (2010) A new methodology to recycle polyester from fabric blends with cellulose. Cellulose 17:215–222

    Article  CAS  Google Scholar 

  • Parra S, Sarria V, Maloto, Periner P, Pulgarin C (2004) Photocatalytic degradation of atrazine using suspended and supported TiO2 J. Appli Catal B: Environ 51:107–116

    Article  CAS  Google Scholar 

  • Pastor AC, Rodriguez-Reinoso F, Marsh H, Martinez MA (1999) Preparation of activated carbon cloths from viscous rayon. Part I. Carbonization procedures. Carbon 37:1275–1283

    Article  CAS  Google Scholar 

  • Pirillo S, Ferreiraa ML, Ruedaa EH (2009) The effect of pH in the adsorption of Alizarin and Eriochrome Blue Black R onto iron oxides. J Hazard Mater 168:168–178

    Article  CAS  Google Scholar 

  • Plazinski W, Dziuba J, Rudzinski W (2013) Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. Journal of the international Adsorption society 19:1055–1064

    Article  CAS  Google Scholar 

  • Radke CJ, Prausnitz JM (1972) Adsorption of organic solutions from dilute aqueous solution on activated carbon. Ind Eng Chem Fundam 11:445–451

    Article  CAS  Google Scholar 

  • Ravindra KG, Ackmez M, Mahesh CC (2013) Kinetic, equilibrium, thermodynamic studies and spectroscopic analysis of Alizarin Red S removal by mustard husk. Journal of Environmental Chemical Engineering 4:1283–1291

    Google Scholar 

  • Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 57:1024–1031

    Article  Google Scholar 

  • Rehman R, Mahmud T (2013) Sorptive elimination of Alizarin Red-S dye from water using Citrullus lanatus peels in environmentally benign way along with equilibrium data modeling. Asian J Chem 25:5351–5356

    Article  CAS  Google Scholar 

  • Roosta M, Ghaedi M, Mohammadi M (2014) Removal of Alizarin Red S by gold nanoparticles loaded on activated carbon combined with ultrasound device: optimization by experimental design methodology. Powder Technol 267:134–144

    Article  CAS  Google Scholar 

  • Salam MA, El-Shishtawy RM, Obaid AY (2014) Synthesis of magnetic multi-walled carbon nanotubes/magnetite/ chitin magnetic nanocomposite for the removal of Rose bengal from real and model solution. J Ind Eng Chem 20:3559–3567

    Article  CAS  Google Scholar 

  • Samusolomon J, Devaprasath PM (2011) Removal of Alizarin Red S (dye) from aqueous media by using Cynodon dactylon as an adsorbent. J Chem Pharm Res 5:478–490

    Google Scholar 

  • Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  • Sylvie B, Nathalie A, Catherine B, Marie FP, Jose MLC, Olivier T (2005) Study of heterogeneous suspensions: a new quantitative approach coupling laser granulometry and UV–vis spectrophotometry. Colloids Surf A Physicochem Eng Asp 262:242–250

    Article  Google Scholar 

  • Tzvetkov G, Mihaylova S, Stoitchkova K, Tzvetkov P, Spassov T (2016) Mechanochemical and chemical activation of lignocellulosic material to prepare powdered activated carbons for adsorption applications. Powder Technol. doi:10.1016/j.powtec.2016.05.033

    Google Scholar 

  • Wanassi B, Azzouz B, Ben-Hassen M (2016) Value-added waste cotton yarn: optimization of recycling process and spinning of reclaimed fibers. Ind Crop Prod 87:27–32

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Engs 89:SA2–S31

    Google Scholar 

  • Zaharia C, Suteu D (2012) Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents—a critical overview. T. Puzyn (Ed.) Organic Pollutants Ten Years After the Stockholm Convention-Environmental and Analytical Update, InTech, Croatia, 472

  • Zahid M, Sabir H, Tanvir A, Habibullah N, Muhammad I, Azeem K, Muhammad A, Fabrice ML (2016) Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. Environmental Science and Pollution Research. 1–16

  • Zainab ZI, Ali RT (2016) Recycled medical cotton industry waste as a source of biogas recovery. J Clean Prod 112:4413–4418

    Article  Google Scholar 

  • Zhuang Q-L, Kyotany T, Tomita A (1994) DRIFT and TK/TPD analyses of surface oxygen complexes formed during carbon gasification. Energy and Fuels 8:714–718

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mejdi Jeguirim.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanassi, B., Hariz, I.B., Ghimbeu, C.M. et al. Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies. Environ Sci Pollut Res 24, 10041–10055 (2017). https://doi.org/10.1007/s11356-017-8410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8410-1

Keywords

Navigation