Log in

Effects of sulfur on toxicity and bioavailability of Cu for castor (Ricinus communis L.) in Cu-contaminated soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The biogeochemical cycling of sulfur (S) in soil has an important impact on the bioavailability of heavy metals and affects the utilization of soil polluted by heavy metals. In addition, S-containing compounds are involved in heavy metal detoxification. This study investigated the effects of S on the toxicity and bioavailability of copper (Cu) in castor (Ricinus communis L.) grown in Cu-contaminated mine tailings. The results showed that the application of S reduced the accumulation of Cu in castor and promoted its growth. With the addition of S, the malondialdehyde (MDA) content of castor leaves decreased significantly compared with control plants, indicating the alleviation of oxidative stress. Superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) content decreased significantly with the alleviation of oxidative stress. The sequential extraction of Cu fractions showed that the application of S significantly reduced the reducible Cu fraction, and increased the oxidizable Cu fraction. It also increased the residual Cu fraction in the soil. The transformation of chemical speciation reduced the bioavailability of Cu in soil, which then reduced the accumulation of Cu in castor. Our results demonstrated that S application was effective at promoting castor growth by reducing the bioavailability and uptake of Cu in Cu-contaminated mine tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Astolfi S, Zuchi S, Passera C (2005) Effect of cadmium on H+ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Sci 169:361–368

    Article  CAS  Google Scholar 

  • Astolfi S, Zuchi S, Neumann G et al (2012) Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation. J Exp Bot 63(3):1241–1250

    Article  CAS  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A et al (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44(1):15–23

    Article  CAS  Google Scholar 

  • Brunetto G, Bastos de Melo GW, Terzano R et al (2016) Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere 162:293–307

    Article  CAS  Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD et al (2010) Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress. Physiol Plant 140(3):280–296

    CAS  Google Scholar 

  • Choudhary SP, Oral HV, Bhardwaj R et al (2012) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63(15):5659–5675

    Article  CAS  Google Scholar 

  • Da Silva NL, Maciel MRW, Batistella CB et al (2006) Optimization of biodiesel production from castor oil. Appl Biochem Biotechnol 130(1–3):405–414

    Article  Google Scholar 

  • Ferri A, Lancilli C, Maghrebi M et al (2017) The sulfate supply maximizing Arabidopsis shoot growth is higher under long- than short-term exposure to cadmium. Front Plant Sci 8:854

    Article  Google Scholar 

  • Flores-Cáceres ML, Hattab S, Hattab S et al (2015) Specific mechanisms of tolerance to copper and cadmium are compromised by a limited concentration of glutathione in alfalfa plants. Plant Sci 233:165–173

    Article  Google Scholar 

  • Fulda B, Voegelin A, Ehlert K et al (2013) Redox transformation, solid phase speciation and solution dynamics of copper during soil reduction and reoxidation as affected by sulfate availability. Geochim Cosmochim Acta 123:385–402

    Article  CAS  Google Scholar 

  • Gee G W, Bauder J W, Klute A (1986) USA. Particle-size analysis. Methods of soil analysis. Part 1. Physical Mineralogical. Methods 383–411

  • Han D, Li X, **ong S et al (2013) Selenium uptake, speciation and stressed response of Nicotiana tabacum L. Environ Exp Bot 95:6–14

    Article  CAS  Google Scholar 

  • Han Y, Zhang L, Yang Y et al (2016) Pb uptake and toxicity to Iris halophila tested on Pb mine tailing materials. Environ Pollut 214:510–516

    Article  CAS  Google Scholar 

  • Hashem HA (2014) Cadmium toxicity induces lipid peroxidation and alters cytokinin content and antioxidant enzyme activities in soybean. Botany 92:1–7

    Article  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA et al (1996) Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant 98(4):685–692

    Article  CAS  Google Scholar 

  • Hofacker AF, Voegelin A, Kaegi R et al (2013) Temperature-dependent formation of metallic copper and metal sulfide nanoparticles during flooding of a contaminated soil. Geochim Cosmochim Acta 103:316–332

    Article  CAS  Google Scholar 

  • Huang G, Su X, Rizwan MS et al (2016) Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils. Environ Sci Pollut Res 23:16845–16856

    Article  CAS  Google Scholar 

  • Kang W, Bao J, Zheng J et al (2015) Distribution and chemical forms of copper in the root cells of castor seedlings and their tolerance to copper phytotoxicity in hydroponic culture. Environ Sci Pollut Res 22(10):7726–7734

    Article  CAS  Google Scholar 

  • Khare R, Kumar S, Shukla T et al (2017) Differential sulphur assimilation mechanism regulates response of Arabidopsis thaliana natural variation towards arsenic stress under limiting sulphur condition. J Hazard Mater 337:198–207

    Article  CAS  Google Scholar 

  • Konno H, Nakato T, Nakashima S et al (2005) Lygodium japonicum fern accumulates copper in the cell wall pectin. J Exp Bot 56(417):1923–1931

    Article  CAS  Google Scholar 

  • Lancilli C, Giacomini B, Lucchini G et al (2014) Cadmium exposure and sulfate limitation reveal differences in the transcriptional control of three sulfate transporter (Sultr1; 2) genes in Brassica juncea. BMC Plant Biol 14(1):132

    Article  Google Scholar 

  • Lange B, Pourret O, Meerts P et al (2016) Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Chemosphere 146:75–84

    Article  CAS  Google Scholar 

  • Ma T, Zhou L, Chen L et al (2016) Oxytetracycline toxicity and its effect on phytoremediation by Sedum plumbizincicola and Medicago sativa in metal-contaminated soil. J Agric Food Chem 64(42):8045–8053

    Article  CAS  Google Scholar 

  • Manceau A, Nagy KL, Marcus MA et al (2008) Formation of metallic copper nanoparticles at the soil− root interface. Environ Sci Technol 42(5):1766–1772

    Article  CAS  Google Scholar 

  • Martins LL, Mourato MP (2006) Effect of excess copper on tomato plants: growth parameters, enzyme activities, chlorophyll, and mineral content. J Plant Nutr 29(12):2179–2198

    Article  CAS  Google Scholar 

  • Morse JW, Luther GW (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta 63:3373–3378

    Article  CAS  Google Scholar 

  • Mwamba TM, Li L, Gill RA et al (2016) Differential subcellular distribution and chemical forms of cadmium and copper in Brassica napus. Ecotoxicol Environ Saf 134:239–249

    Article  CAS  Google Scholar 

  • Nakamura S, Suzui N, Nagasaka T et al (2013) Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape. J Exp Bot 64(4):1073–1081

    Article  CAS  Google Scholar 

  • Olivares AR, Carrillo-González R, González-Chávez MCA et al (2013) Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manag 114:316–323

    Article  Google Scholar 

  • Pinhero RG, Rao MV, Paliyath G et al (1997) Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol 114(2):695–704

    Article  CAS  Google Scholar 

  • Ric De Vos CH, Vonk MJ, Vooijs R et al (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  Google Scholar 

  • Rizwan MS, Imtiaz M, Huang G et al (2016) Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar. Environ Sci Pollut Res 23:15532–15543

    Article  CAS  Google Scholar 

  • Ryan BM, Kirby JK, Degryse F et al (2013) Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytol 199(2):367–378

    Article  CAS  Google Scholar 

  • Samarth RM, Panwar M, Kumar M et al (2008) Evaluation of antioxidant and radical-scavenging activities of certain radioprotective plant extracts. Food Chem 106:868–873

    Article  CAS  Google Scholar 

  • Seth CS, Remans T, Keunen E et al (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35(2):334–346

    Article  CAS  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR et al (2017) Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm.(Brassicaceae). Ecotoxicol Environ Saf 135:209–215

    Article  CAS  Google Scholar 

  • Srivastava S, D’souza SF (2009) Increasing sulfur supply enhances tolerance to arsenic and its accumulation in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 43:6308–6313

    Article  CAS  Google Scholar 

  • SSSC (Soil Science Society of China) (1999) Analysis methods for soil and agricultural chemistry. China Science and Technology Publishing House, Bei**g

    Google Scholar 

  • Sun L, Zheng C, Yang J et al (2016) Impact of sulfur (S) fertilization in paddy soils on copper (Cu) accumulation in rice (Oryza sativa L.) plants under flooding conditions. Biol Fertil Soils 52(1):31–39

    Article  CAS  Google Scholar 

  • Wang YP, Li QB, Hui W et al (2008) Effect of sulphur on soil Cu/Zn availability and microbial community composition. J Hazard Mater 159(2):385–389

    Article  CAS  Google Scholar 

  • Wang C, Li G, Zhang Z et al (2013) Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers. Biochem Syst Ecol 51:301–307

    Article  CAS  Google Scholar 

  • Weber FA, Voegelin A, Kretzschmar R (2009) Multi-metal contaminated dynamics in temporarily flooded soil under sulfate limitation. Geochim Cosmochim Acta 73:5513–5527

    Article  CAS  Google Scholar 

  • Wei S, Ma LQ, Saha U et al (2010) Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L. Environ Pollut 158(5):1530–1535

    Article  CAS  Google Scholar 

  • Yang JX, Liu ZY, Wan XM et al (2016) Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant. Ecotoxicol Environ Saf 128:206–212

    Article  CAS  Google Scholar 

  • Yin H, Tan N, Liu C et al (2016) The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China. Chemosphere 161:181–189

    Article  CAS  Google Scholar 

  • Zhang M, Hu C, Zhao X et al (2012) Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis). Plant Soil 355(1–2):375–383

    Article  CAS  Google Scholar 

  • Zhou W, Wan M, He P et al (2002) Oxidation of elemental sulfur in paddy soils as influenced by flooded condition and plant growth in pot experiment. Biol Fertil Soils 36:384–389

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of China (41371470) and the National Key Technology Support Program (2015BAD05B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqing Hu.

Additional information

Responsible editor: Roberto Terzano

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, C., You, J., Qi, Y. et al. Effects of sulfur on toxicity and bioavailability of Cu for castor (Ricinus communis L.) in Cu-contaminated soil. Environ Sci Pollut Res 24, 27476–27483 (2017). https://doi.org/10.1007/s11356-017-0306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0306-6

Keywords

Navigation