Log in

A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Rice paddies and aquaculture wetlands are typical agricultural wetlands that constitute one of the important sources of atmospheric methane (CH4). Traditional transplanted rice paddies have been experiencing conversion to pond aquaculture wetlands for pursuing higher economic benefits over the past decades in southeast China. A parallel field experiment was carried out to compare CH4 emissions from a transplanted rice paddy and its converted crab-fish farming wetland in southeast China. Over the rice-growing season, CH4 fluxes averaged 1.86 mg m−2 h−1 from rice paddies, and 1.14 and 0.50 mg m−2 h−1 for the treatments with or without aquatic vegetation present in the crab-fish farming wetlands, respectively. When averaged across the treatments, seasonal CH4 emissions from crab-fish framing wetlands were 52 % lower than those from rice paddies. The CH4 fluxes were negatively related to water dissolved oxygen (DO) concentration but positively related to soil/sediment dissolved organic carbon (DOC) content in crab-fish farming wetlands. Dependence of CH4 fluxes on DO or DOC was intensified by the aquatic vegetation presence. By extrapolating the present CH4 emission rate with the current rice paddy-converted aquaculture cultivation area, the seasonal CH4 emissions from inland aquaculture wetlands during the critical farming stage (20 June to 18 October) were estimated to be 33.6 Gg ha−1 in southeast China in 2012. Rice paddies conversion to crab-fish farming wetlands might have reduced CH4 emissions by 22–54 % in mainland China. Results of this study suggest that the conversion of transplanted rice paddies to crab-fish aquaculture wetlands for higher economic benefits would also lead to a lower ecosystem CH4 release rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • (2014) Statistical overview of national fishery. The Fishery Bureau, Ministry of Agriculture of PRC. Chinese Agriculture Press, Bei**g

  • Adams CA, Andrews JE, Jickells T (2012) Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Sci Total Environ 434:240–251

    Article  CAS  Google Scholar 

  • Banger K, Tian HQ, Lu CQ (2012) DO nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob Chang Biol 10:3259–3267

    Article  Google Scholar 

  • Bastviken D, Ejlertsson J, Tranvik L (2002) Measurement of methane oxidation in lakes: a comparison of methods. Environ Sci Technol 36:3354–3361

    Article  CAS  Google Scholar 

  • Bastviken D, Cole JJ, Pace ML et al (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res. doi:10.1029/2007JG000608

    Google Scholar 

  • Berg H (2002) Rice monoculture and integrated rice-fish farming in the Mekong Delta, Vietnam—economic and ecological considerations. Ecol Econ 41:95–107

    Article  Google Scholar 

  • Bhattacharyya P, Sinhababu DP, Roy KS et al (2013) Effect of fish species on methane and nitrous oxide emission in relation to soil C, N pools and enzymatic activities in rainfed shallow lowland rice-fish farming system. Agric Ecosyst Environ 176:53–62

    Article  CAS  Google Scholar 

  • Bhullar GS, Edwards PJ, Venterink HO (2014) Influence of different plant species on methane emissions from soil in a restored Swiss wetland. PLoS ONE 9, e89588

    Article  CAS  Google Scholar 

  • Bouwman AF (1990) Agronomic aspects of wetland rice cultivation and associated methane emissions. Biogeochemistry 15:65–88

    Google Scholar 

  • Boyer JN, Groffman PM (1996) Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. Soil Biol Biochem 28:783–790

    Article  CAS  Google Scholar 

  • Cai Z, **ng G, Yan X et al (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196:7–14

    Article  CAS  Google Scholar 

  • Casillas-Hernández R, Magallón-Barajas F, Portillo-Clarck G et al (2006) Nutrient mass balances in semi-intensive shrimp ponds from Sonora, Mexico using two feeding strategies: trays and mechanical dispersal. Aquaculture 258:289–298

    Article  Google Scholar 

  • Chen H, Wu Y, Yuan X et al (2009) Methane emissions from newly created marshes in the drawdown area of the Three Gorges Reservoir. J Geophys Res. doi:10.1029/2009JD012410

    Google Scholar 

  • Chen H, Zhu QA, Peng CH et al (2013) Methane emissions from rice paddies, natural wetlands, lakes in China: synthesis new estimate. Glob Chang Biol 19:19–32

    Article  Google Scholar 

  • Cole JJ, Bade DL, Bastviken D et al (2010) Multiple approaches to estimating air-water gas exchange in small lakes. Limnol Oceanogr-Meth 8:285–293

    Article  CAS  Google Scholar 

  • Dalal RC, Allen DE (2008) Greenhouse gas fluxes from natural ecosystems. Aust J Bot 56:369–407

    Article  CAS  Google Scholar 

  • Dasselaar AVDP-V, Marinus L, Beusichem V et al (1999) Determinants of spatial variability of methane emissions from wet grasslands on peat soil. Biogeochemistry 44:221–237

    Google Scholar 

  • Datta A, Nayak DA, Sinhababu DP et al (2009) Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of Eastern India. Agric Ecosyst Environ 129:228–237

    Article  CAS  Google Scholar 

  • Ding WX, Cai ZC, Tsuruta H (2004) Summertime variation of methane oxidation in the rhizosphere of a Carex dominated freshwater marsh. Atmos Environ 38:4165–4173

    Article  CAS  Google Scholar 

  • Ding WX, Cai ZC, Tsuruta H (2005) Plant species effects on methane emissions from freshwater marshes. Atmos Environ 39:3199–3207

    Article  CAS  Google Scholar 

  • Ding WX, Zhang Y, Cai ZC (2010) Impact of permanent inundation on methane emissions from a Spartina alterniflora coastal salt marsh. Atmos Environ 44:3894–3900

    Article  CAS  Google Scholar 

  • Duan XN, Wang XK, Mu YJ (2005) Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China. Atmos Environ 39:4479–4487

    Article  CAS  Google Scholar 

  • Duchemin E, Lucotte M, Canuel R (1999) Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies. Environ Sci Technol 33:350–357

    Article  CAS  Google Scholar 

  • Fernando CH (1993) Rice field ecology and fish culture—an overview. Hydrobiologia 259:91–113

    Article  Google Scholar 

  • Food and Agricultural Organization (FAO) (2014) The State of World Fisheries and Aquaculture, Food and Agricultural Organization of the United Nations, Rome, Italy

  • Frei M, Becker K (2005) Integrated rice-fish production and methane emission under greenhouse conditions. Agric Ecosyst Environ 107:51–56

    Article  CAS  Google Scholar 

  • Frei M, Razzak MA, Hossain MM et al (2007) Methane emissions and related physicochemical soil and water parameters in rice-fish systems in Bangladesh. Agric Ecosyst Environ 120:391–398

    Article  CAS  Google Scholar 

  • Frolking S, Qiu J, Boles S et al (2002) Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob Biogeochem Cycles 16:1180–1196

    Google Scholar 

  • Galfalk M, Bastviken D, Fredriksson S et al (2013) Determination of the piston velocity for water-air interfaces using flux chambers, acoustic Doppler velocimetry, and IR imaging of the water surface. J Geophys Res 118:770–782

    Article  Google Scholar 

  • Heliman MA, Carlton RG (2001) Methane oxidation associated with submersed vascular macrophytes and its impact on plant diffusive methane flux. Biogeochemistry 52:207–224

    Article  Google Scholar 

  • Hirota M, Tang YH, Hu QW et al (2004) Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biol Biochem 36:737–748

    Article  CAS  Google Scholar 

  • Hu Z, Lee JW, Chandran B et al (2012) Nitrous oxide (N2O) emission from aquaculture: a review. Environ Sci Technol 46:6470–6480

    Article  CAS  Google Scholar 

  • Hu Z, Lee JW, Chandran B et al (2013) Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission. Bioresour Technol 130:314–320

    Article  CAS  Google Scholar 

  • Huang Y, Zhang W, Zheng XH et al (2004) Modeling methane emission from rice paddies with various agricultural practices. J Geophys Res. doi:10.1029/2003JD004401

    Google Scholar 

  • Huang Y, Wang H, Huang H et al (2005) Characteristics of methane emission from wetland rice-duck complex ecosystem. Agric Ecosyst Environ 105:181–193

    Article  CAS  Google Scholar 

  • Huttunen JT, Visanen TS, Hellsten SK et al (2002) Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. Glob Biogeochem Cycles. doi:10.1029/2000GB001316

    Google Scholar 

  • Huttunen JT, Alm J, Liikanen A et al (2003) Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potencial anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52:609–621

    Article  CAS  Google Scholar 

  • Huttunen JT, Vaiasnen TS, Hellsten SK et al (2006) Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs. Boreal Environ Res 11:27–34

    CAS  Google Scholar 

  • Ichinose K, Tochihara M, Wada T et al (2002) Effect of common carp on apple snail in a rice field evaluated by a predator–prey logistic model. Int J Pest Manag 48:133–138

    Article  Google Scholar 

  • IPCC (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiang CS, Wang YS, Hao QJ et al (2009) Effect of land-use change on CH4 and N2O emissions from freshwater marsh in Northeast China. Atmos Environ 43:3305–3309

    Article  CAS  Google Scholar 

  • Kelly CA, Rudd JWM, Bodaly RA et al (1997) Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservior. Environ Sci Technol 31:1334–1344

    Article  CAS  Google Scholar 

  • Kim J, Verma SB, Billesbach DP (1998) Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: effect of growth stage and plant-mediated transport. Glob Chang Biol 5:433–440

    Article  Google Scholar 

  • Ko JY, Kang HW (2000) The effects of cultural practices on methane emission from rice fields. Nutr Cycl Agroecosyst 58:311–314

    Article  Google Scholar 

  • Liu B, Jiang GC, Wang HP et al (2009) Research and application of the techniques of increase DO using micropore aeration in the bottom of crab pond. J Aquac 40:8–14 (in Chinese)

    CAS  Google Scholar 

  • Liu SW, Zhang L, Liu QH et al (2012a) Fe(III) fertilization mitigating net global warming potential and greenhouse gas intensity in paddy rice-wheat rotation systems in China. Environ Pollut 164:73–80

    Article  CAS  Google Scholar 

  • Liu SW, Zhang L, Zou JW et al (2012b) Methane and nitrous oxide emissions from rice seedling nurseries under flooding and moist irrigation regimes in Southeast China. Sci Total Environ 426:166–171

    Article  CAS  Google Scholar 

  • Liu SW, Zhang YJ, Zhang L et al (2014) Methane and nitrous oxide emissions from direct-seeded and seedling-transplanted rice paddies in southeast China. Plant Soil 374:285–297

    Article  CAS  Google Scholar 

  • Lu RK (2000) Methods of soil and agro-chemical analysis. China Agricultural Science & Technology Press, Bei**g (in Chinese)

    Google Scholar 

  • Lu JB, Li X (2006) Review of rice-fish-farming systems in China—one of the Globally Important Ingenious Agriculture Heritage Systems (GIAHS). Aquaculture 260:106–113

    Article  Google Scholar 

  • Machado L, Magnusson M, Paul NA et al (2014) Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 9, e85289

    Article  CAS  Google Scholar 

  • Mackay KT (1995) Rice-Fish Culture in China. IDRC

  • Minkkinen K, Laine J (2006) Vegetation heterogeneity and ditches create spatial variability in methane emissions from peatlands drained for forestry. Plant Soil 285:289–304

    Article  CAS  Google Scholar 

  • Mohatny RK, Verma HN, Brahmanand PS (2004) Performance evaluation of rice-fish integration system in rainfed medium land ecosystem. Aquaculture 230:125–135

    Article  Google Scholar 

  • Morin TH, Bohrer G, Naor-Azrieli L et al (2014) The seasonal and diurnal dynamics of methane flux at a created urban wetland. Ecol Eng. doi:10.1016/j.ecoleng.2014.02.002

    Google Scholar 

  • Qin YM, Liu SW, Guo YQ et al (2010) Methane and nitrous oxide emissions from organic and conventional rice crop** systems in Southeast China. Biol Fertil Soils 46:825–834

    Article  CAS  Google Scholar 

  • Rakocy JE, Masser MP, Losordo TM (2006) Recirculating aquaculture tank production systems aquaponics-integration fish and plant culture. SRAC Publication, Auburn

    Google Scholar 

  • Riera JL, Schindler JE, Kratz TK (1999) Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, USA. Can J Fish Aquat Sci 56:265–274

    Article  Google Scholar 

  • Rothuis AJ, Nam CQ, Richter CJJ et al (1998) Polyculture of silver barb, Puntuis gonionotus (Bleeker), Nile tilapia, Oreochromis niloticus (L.), and common carp, Cyprinus carpio L., in Vietnamese rice fields: fish production parameters. Aquac Res 29:661–668

    Article  Google Scholar 

  • Roulet NT, Crill PM, Comer NT et al (1997) CO2 and CH4 flux between a boreal beaver pond and the atmosphere. J Geophys Res 102:29313–29319

    Article  CAS  Google Scholar 

  • Rudd JWM, Harris R, Kelly CA et al (1993) Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio 22:246–248

    Google Scholar 

  • Schrier-Uijl AP, Veraart AJ, Leffelaar PA et al (2011) Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry 102:265–279

    Article  CAS  Google Scholar 

  • Schutz H, Seiler WF, Conrad R (1989) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33–53

    Article  CAS  Google Scholar 

  • Shang QY, Yang XX, Gao CM et al (2011) Net annual global warming potential and greenhouse gas intensity in Chinese double rice-crop** systems: a 3-year field measurement in long-term fertilizer experiments. Glob Chang Biol 17:2196–2210

    Article  Google Scholar 

  • Singh SN, Kulshreshtha K, Agnihotri S (2000) Seasonal dynamics of methane emission from wetlands. Chemosphere 2:39–46

    CAS  Google Scholar 

  • Smith P, Martino D, Cai ZC et al (2008) Greenhouse gas mitigation in agriculture. Philos T R Soc B 1492:789–813

    Article  CAS  Google Scholar 

  • Wang MX, Shangguan XJ (1996) CH4 emission from various rice fields in P.R.China. Theor Appl Climatol 55:129–138

    Article  Google Scholar 

  • Wang MX, Shangguan XJ, Shen RX (1993) Methane production, emission and possibly control measures in rice agriculture. Adv Atmos Sci 10:307–314

    Article  Google Scholar 

  • Wang HJ, Liu JW, Wang WD et al (2006) Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China. J Geophys Res. doi:10.1029/2005JD006864

    Google Scholar 

  • Wang YH, Yang H, Chen X et al (2013) Effects of plant species on soil microbial processes and CH4 emission from constructed wetlands. Environ Pollut 174:273–278

    Article  CAS  Google Scholar 

  • Wang YY, Hu CS, Ming H et al (2014) Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the north China plain. PLoS ONE 9, e98445

    Article  CAS  Google Scholar 

  • Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emissions versus carbon sequestration. Tellus 53B:521–528

    Article  CAS  Google Scholar 

  • Williams J, Crutzen PJ (2010) Nitrous oxide from aquaculture. Nat Geosci 3:143–143

    Article  CAS  Google Scholar 

  • Yagi K, Minami K (1990) Effect of organic matter application on methane emission from some Japanese rice fields. Soil Sci Plant Nutr 36:599–610

    Article  CAS  Google Scholar 

  • Yan X, Yagi K, Akiyama H et al (2005) Statistical analysis of the major variables controlling methane emission from rice fields. Glob Chang Biol 11:1131–1141

    Article  Google Scholar 

  • Yan X, Akiyama H, Yagi K (2009) Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob Biogeochem Cycles. doi:10.1029/2008GB003299

    Google Scholar 

  • Yano Y, McDowell WH, Kinner NE (1998) Quantification of biodegradable dissolved organic carbon in soil solution with flowthrough bioreactors. Soil Sci Soc Am J 62:1556–1564

    Article  CAS  Google Scholar 

  • Yavitt JB, Lang GE (1990) Methane production in contrasting wetland sites: response to organic-chemical components of peat and to sulfate reduction. Geomicrobiol J 8:27–46

    Article  CAS  Google Scholar 

  • Zeng QF, Gu XH, Chen X et al (2013) The impact of Chinese mitten crab culture on water quality, sediment and the pelagic and macrobenthic community in the reclamation area of Guchenghu Lake. Fish Sci 79:689–697

    Article  CAS  Google Scholar 

  • Zhang W, Yu YQ, Huang Y et al (2011) Modeling methane emissions from irrigate rice cultivation in China from 1960 to 2050. Glob Chang Biol. doi:10.1111/j.1365-2486.2011.02495x

    Google Scholar 

  • Zheng XH, Wang MX, Wang YS et al (2000) Mitigation options for methane, nitrous oxide and nitrous oxide emissions from agricultural ecosystems. Adv Atmos Sci 17:83–92

    Article  Google Scholar 

  • Zou JW, Huang Y, Zong LG et al (2004) Carbon dioxide, methane, and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature. Adv Atmos Sci 21:691–689

    Article  Google Scholar 

  • Zou JW, Huang Y, Jiang JY (2005) A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effect of water regime, crop residue, and fertilizer application. Global Biogeochem Cycles GB2021. doi: 10.1029/2004GB002401

  • Zou JW, Liu SW, Qin YM et al (2009) Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China. Agric Ecosyst Environ 129:516–522

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, 41171194, 41301244, 41225003), National Basic Research Program of China (2012CB417102), Natural science foundation of Jiangsu Province (BK20130695), and China Postdoctoral Science Foundation (2014M551610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuwei Liu.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Wu, S., Ji, C. et al. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China. Environ Sci Pollut Res 23, 1505–1515 (2016). https://doi.org/10.1007/s11356-015-5383-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5383-9

Keywords

Navigation