Log in

Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for acidic herbicides and metabolites analysis in fresh water

  • Potential toxicity of pesticides in freshwater environments: passive sampling, exposure and impacts on biofilms
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Theoretical papers and environmental applications of hydrophilic interaction liquid chromatography (HILIC) have been published for a wide range of analytes, but to our knowledge, no study focused on acidic herbicides (e.g., triketones, phenoxy acids, sulfonylurea, and acidic metabolites of chloroacetanilides). Matrix effects are the main obstacle to natural sample analysis by liquid chromatography coupled with tandem mass spectrometry (MS) via an electrospray ionization (ESI) interface. Therefore, we paid particular attention on limiting interference by (i) adapting the emerging HILIC technique, which is generally considered more sensitive than conventional reversed phase liquid chromatography and (ii) optimizing the solid phase extraction (SPE) step using a design of experiment. A rapid and reliable off line SPE-HILIC-ESI-MS/MS method was thus developed for the quantification of acidic herbicides in fresh water, with limits of quantifications (LOQs) ranging from 5 to 22 ng L−1. Then, the analysis of freshwater samples highlighted the robustness of the method, and the importance of the chloroacetanilides metabolites among the studied analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A 499:177–196

    Article  CAS  Google Scholar 

  • Assoumani A, Lissalde S, Margoum C, Mazzella N, Coquery M (2013) In situ application of stir bar sorptive extraction as a passive sampling technique for the monitoring of agricultural pesticides in surface waters. Sci Total Environ 463–464:829–835

    Article  Google Scholar 

  • Balinova A (1996) Ion-pairing mechanism in the solid-phase extraction and reversed-phase high-performance liquid chromatographic determination of acidic herbicides in water. J Chromatogr A 728(1–2):319–324

    Article  CAS  Google Scholar 

  • Carabias-Martinez R, Rodriguez-Gonzalo E, Herrero-Hernández E, Hernández-Méndez J (2004a) Simultaneous determination of phenyl- and sulfonylurea herbicides in water by solid-phase extraction and liquid chromatography with UV diode array or mass spectrometric detection. Anal Chim Acta 517(1–2):71–79

    Article  CAS  Google Scholar 

  • Carabias-Martinez R, Rodriguez-Gonzalo E, Revilla-Ruiz P (2004b) Determination of weakly acidic endocrine-disrupting compounds by liquid chromatography-mass spectrometry with post-column base addition. J Chromatogr A 1056(1–2):131–138

    Article  CAS  Google Scholar 

  • Chirita R-I, West C, Finaru A-L, Elfakir C (2010) Approach to hydrophilic interaction chromatography column selection: Application to neurotransmitters analysis. J Chromatogr A 1217(18):3091–3104

    Article  CAS  Google Scholar 

  • Chirita R-I, West C, Zubrzycki S, Finaru A-L, Elfakir C (2011) Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography. J Chromatogr A 1218(35):5939–5963

    Article  CAS  Google Scholar 

  • Dagnac T, Jeannot R, Mouvet C, Baran N (2002) Determination of oxanilic and sulfonic acid metabolites of acetochlor in soils by liquid chromatography–electrospray ionisation mass spectrometry. J Chromatogr A 957(1):69–77

    Article  CAS  Google Scholar 

  • Dias NC, Poole CF (2002) Mechanistic study of the sorption properties of Oasis® HLB and its use in solid-phase extraction. Chromatographia 56(5–6):269–275

    Article  CAS  Google Scholar 

  • Esparza X, Moyano E, Galceran MT (2009) Analysis of chlormequat and mepiquat by hydrophilic interaction chromatography coupled to tandem mass spectrometry in food samples. J Chromatogr A 1216(20):4402–4406

    Article  CAS  Google Scholar 

  • Freitas LG, Götz CW, Ruff M, Singer HP, Müller SR (2004) Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography–tandem mass spectrometry. J Chromatogr A 1028(2):277–286

    Article  CAS  Google Scholar 

  • Fung N, Ikesaki T (1991) Determination of nine acidic herbicides in water and soil by gas chromatograpy using an electron-capture detector. J Chromatogr A 537:385–395

    Article  Google Scholar 

  • Guo Y, Gaiki S (2005) Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. J Chromatogr A 1074(1–2):71–80

    Article  CAS  Google Scholar 

  • Heaton J, Gray N, Cowan DA, Plumb RS, Legido-Quigley C, Smith NW (2011) Comparison of reversed-phase and hydrophilic interaction liquid chromatography for the separation of ephedrines. Journal of Chromatography A (0)

  • Kalkhoff SJ, Kolpin DW, Thurman EM, Ferrer I, Barcelo D (1998) Degradation of chloroacetanilide herbicides: The prevalence of sulfonic and oxanilic acid metabolites in Iowa groundwaters and surface waters. Environ Sci Technol 32(11):1738–1740

    Article  CAS  Google Scholar 

  • Karlsson G, Winge S, Sandberg H (2005) Separation of monosaccharides by hydrophilic interaction chromatography with evaporative light scattering detection. J Chromatogr A 1092(2):246–249

    Article  CAS  Google Scholar 

  • Kebarle P, Tang L (1993) From ions in solution to ions in the gas phase: The mechanism of electrospray mass spectrometry. Anal Chem 65(22):972A–986A

    CAS  Google Scholar 

  • Li R, Zhang Y, Lee CC, Lu R, Huang Y (2010) Development and validation of a hydrophilic interaction liquid chromatographic method for determination of aromatic amines in environmental water. J Chromatogr A 1217(11):1799–1805

    Article  CAS  Google Scholar 

  • Lissalde S, Mazzella N, Fauvelle V, Delmas F, Mazellier P, Legube B (2011) Liquid chromatography coupled with tandem mass spectrometry method for thirty-three pesticides in natural water and comparison of performance between classical solid phase extraction and passive sampling approaches. J Chromatogr A 1218(11):1492–1502

    Article  CAS  Google Scholar 

  • Liu M, Chen EX, Ji R, Semin D (2008) Stability-indicating hydrophilic interaction liquid chromatography method for highly polar and basic compounds. J Chromatogr A 1188(2):255–263

    Article  CAS  Google Scholar 

  • Mitchell CR, Bao Y, Benz NJ, Zhang S (2009) Comparison of the sensitivity of evaporative universal detectors and LC/MS in the HILIC and the reversed-phase HPLC modes. J Chromatogr B 877(32):4133–4139

    Article  CAS  Google Scholar 

  • Nguyen HP, Schug KA (2008) The advantages of ESI-MS detection in conjunction with HILIC mode separations: Fundamentals and applications. J Sep Sci 31(9):1465–1480

    Article  CAS  Google Scholar 

  • Öllers S, Singer HP, Fässler P, Müller SR (2001) Simultaneous quantification of neutral and acidic pharmaceuticals and pesticides at the low-ng/l level in surface and waste water. J Chromatogr A 911(2):225–234

    Article  Google Scholar 

  • Pichon V, Cau Dit Coumes C, Chen L, Guenu S, Hennion MC (1996) Simple removal of humic and fulvic acid interferences using polymeric sorbents for the simultaneous solid-phase extraction of polar acidic, neutral and basic pesticides. J Chromatogr A 737(1):25–33

    Article  CAS  Google Scholar 

  • Qin F, Zhao YY, Sawyer MB, Li X-F (2008) Column-switching reversed phase–hydrophilic interaction liquid chromatography/tandem mass spectrometry method for determination of free estrogens and their conjugates in river water. Anal Chim Acta 627(1):91–98

    Article  CAS  Google Scholar 

  • Quintana JB, Rodil R, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2007) Multiresidue analysis of acidic and polar organic contaminants in water samples by stir-bar sorptive extraction–liquid desorption–gas chromatography–mass spectrometry. J Chromatogr A 1174(1–2):27–39

    Article  CAS  Google Scholar 

  • Rodil R, Quintana JB, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2009) Multi-residue analytical method for the determination of emerging pollutants in water by solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1216(14):2958–2969

    Article  CAS  Google Scholar 

  • Roubeix V, Fauvelle V, Tison-Rosebery J, Mazzella N, Coste M, Delmas F (2012) Assessing the impact of chloroacetanilide herbicides and their metabolites on periphyton in the Leyre River (SW France) via short term growth inhibition tests on autochthonous diatoms. J Environ Monit 14(6):1655–1663

    Article  CAS  Google Scholar 

  • Steen R, Hogenboom AC, Leonards PEG, Peerboom RAL, Cofino WP, Brinkman UAT (1999) Ultra-trace-level determination of polar pesticides and their transformation products in surface and estuarine water samples using column liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 857(1–2):157–166

    Article  CAS  Google Scholar 

  • Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry. Clin Biochem 38(4):328–334

    Article  CAS  Google Scholar 

  • Tran ATK, Hyne RV, Doble P (2007) Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC. Chemosphere 67(5):944–953

    Article  CAS  Google Scholar 

  • Vikingsson S, Kronstrand R, Josefsson M (2008) Retention of opioids and their glucuronides on a combined zwitterion and hydrophilic interaction stationary phase. J Chromatogr A 1187(1–2):46–52

    Article  CAS  Google Scholar 

  • Wells MJM, Yu LZ (2000) Solid-phase extraction of acidic herbicides. J Chromatogr A 885(1–2):237–250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Region Aquitaine, FEDER, and the ANR RIPOST and ANR Potomac for their financial support and Muriel Bonnet and Maryse Boudigues for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincent Fauvelle or Nicolas Mazzella.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fauvelle, V., Mazzella, N., Morin, S. et al. Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for acidic herbicides and metabolites analysis in fresh water. Environ Sci Pollut Res 22, 3988–3996 (2015). https://doi.org/10.1007/s11356-014-2876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2876-x

Keywords

Navigation