Log in

Coal fly ash as adsorptive material for treatment of a real textile effluent: operating parameters and treatment efficiency

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The experimental results performed after the application of one single-stage treatment by sorption onto coal fly ash are evaluated in order to decolorize a real textile effluent of a private company specializing in manufacturing of cotton fabrics (i.e., sorption performance applied for a real textile effluent collected after the fabric dyeing, rinsing, and final finishing steps). The experiments are focused on studying the effect of initial textile effluent pH, adsorbent dose, temperature and adsorption time, considered as operating parameters of sorption process for high pollutant removals (e.g., organic pollutants as dyes, phenols, polymeric, and degradation compounds), and decoloration. The results indicate high values of decoloration degree (55.42–83.00 %) and COD removal (44.44–61.11 %) when it is worked at pH ≤2 with coal ash dose of 12–40 g/L, temperature higher than 20–25 °C, and continuous static operating regime (with an initial agitation step of 3–5 min). The treated textile effluent fulfills the quality demand, and is recyclable, inside reused or discharged after a stage of neutralization (standard pH of 6.5–8.5 for all textile effluent discharges). Also, the final effluent is able to follow the common path to the central biological treatment plant (i.e., a centralized treatment plant for all companies acting in the industrial site area with mechanical–biological steps for wastewater treatment) or may be directly discharged in the nearly watercourse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves BMA, Pinho DNM (2000) Ultrafiltration for color removal of tannery dyeing wastewaters. Desalination 1303:147–154

    Article  Google Scholar 

  • Anjaneyulu Y, Sreedhara CN, Samuel SRD (2005) Decolorization of industrial effluents—available methods and emerging technologies—a review. Rev Environ Sci Biotechnol 4(4):245–273

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085

    Article  CAS  Google Scholar 

  • Geethakarthi A, Phanikumar BR (2012) Characterization of tannery sludge activated carbon and its utilization in the removal of azo reactive dye. Environ Sci Pollut Res 19(3):656–665

    Article  CAS  Google Scholar 

  • Gupta VK, Imran A (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42(3):766–770

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low cost adsorbents for dye removal—a review. J Environ Manag 90(8):2313–2338

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2006a) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45(4):1446–1453

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Kurup L, Mittal J (2006b) Adsorption of a hazardous dye, erythrosine, over hen feathers. J Col Interface Sci 304(1):52–57

    Article  CAS  Google Scholar 

  • Gupta VK, Imran A, Saini VK (2007a) Defluoridation of wastewaters using waste carbon slurry. Water Res 41(15):3307–3316

    Article  CAS  Google Scholar 

  • Gupta VK, Imran A, Saini VK (2007b) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Col Interface Sci 315(1):87–93

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007c) Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J Col Interface Sci 312(2):292–296

    Article  CAS  Google Scholar 

  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas (2009a) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842

    Article  Google Scholar 

  • Gupta VK, Mittal A, Mittal M, Mittal J (2009b) Adsorption of carmoisine A from wastewater using waste materials—bottom ash and de-oiled soya. J Colloid Interface Sci 335(1):24–33

    Article  CAS  Google Scholar 

  • Harja M, Barbuta M, Rusu L, Apostolescu N (2008) Utilization of coal fly ash from power plants. I. Ash characterization. Environ Eng Manag J 7(3):289–293

    CAS  Google Scholar 

  • Hebeish A, Ramadan MA, Abdel-Hadim A, AboAkeil E (2011) An effective adsorbent based on sawdust for removal of direct dye from aqueous solutions. Clean Technol Environ Policy 13:713–718

    Article  CAS  Google Scholar 

  • Li F (2012) Study on sono-photocatalytic degradation of POPs: a case study hydrating polyacrylamide in wastewater. In: Puzyn T, Mostrag-Szlichtyng A (eds) Organic pollutants. Intech Publisher Inc., Rijeka, pp 327–344

    Google Scholar 

  • Liu Q, Zheng Z, Yang X, Luo X, Zhang J, Zheng B (2012) Effect of factors on decolorization of azo dye methyl orange by oxone/natural sunlight in aqueous solutions. Environ Sci Pollut Res 19(2):577–584

    Article  CAS  Google Scholar 

  • Machulek A Jr, Quina FH, Gozzi F, Silva VO, Driedrich LC, Moraes JEF (2012) Fundamental mechanistic studies of the photo-fenton reaction for the degradation of organic pollutants. In: Puzyn T, Mostrag-Szlichtyng A (eds) Organic pollutants. Intech Publisher Inc., Rijeka, pp 271–292

    Google Scholar 

  • Macoveanu M, Balba D, Balba N, Gavrilescu M, Soreanu G (2002) Ionic exchange processes in environmental protection. MatrixRom Ed, Bucureşti, pp 265–274, in Romanian

    Google Scholar 

  • Mittal A (2006a) Adsorption kinetics of removal of a toxic dye, malachite green, from wastewater by using hen feathers. J Hazard Mater 133(1–3):196–202

    Article  CAS  Google Scholar 

  • Mittal A (2006b) Use of hen feathers as potential adsorbent for the removal of hazardous dye, brilliant blue FCF, from wastewater. J Hazard Mater 128(2–3):233–239

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Kurup L, Singh AK (2006) Process development for the removal of hazardous dye erythrosine from wastewater by waste materials—bottom ash and de-oiled soya as adsorbents. J Hazard Mater 138(1):95–105

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Gupta VK (2010) Removal and recovery of chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci 344(2):497–507

    Article  CAS  Google Scholar 

  • Naumczyk J, Szpyrkowicz I, Grandi FZ (1996) Electrochemical treatment of textile wastewater. Water Sci Technol 33:17–24

    Google Scholar 

  • Neamţu M, Zaharia C, Catrinescu C, Yediler A, Kettrup A, Macoveanu M (2004) Fe-exchanged Y zeolite as catalyst for wet peroxide oxidation of reactive azo dye procion marine H-EXL. Appl Catal B Environ 78(2):287–294

    Article  Google Scholar 

  • Ovejero G, Sotelo JL, Rodriguez A, Vallet A, Garcia J (2011) Wet air oxidation and catalytic wet air oxidation for dyes degradation. Environ Sci Pollut Res 18(9):1518–1526

    Article  CAS  Google Scholar 

  • Őzdemir C, Őden MK, Şahinkaya S, Kalipçi E (2011) Color removal from synthetic textile wastewater by sono-fenton process. Clean Soil Air Water 39(1):60–67

    Article  Google Scholar 

  • Oztekin Y, Yazicigil Z, Ata N, Karadayl N (2010) The comparison of two different electro-membrane processes’ performance for industrial applications. Clean Soil Air Water 38(5-6):478–484

    Article  CAS  Google Scholar 

  • Parab H, Sudersanan M, Shenoy N, Pathare T, Vaze B (2009) Use of agro-industrial wastes for removal of basic dyes from aqueous solutions. Clean 37(12):963–969

    CAS  Google Scholar 

  • Ramesh Babu B, Parande AK, Raghu S, Prem Kumar T (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11:141

    Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Soloman PA, Basha CA, Velan M, Ramamurthi V, Koteeswaran K, Balasubramanian N (2009) Electrochemical degradation of Remazol Black B dye effluent. Clean 37(11):889–900

    CAS  Google Scholar 

  • Surpateanu M, Zaharia C (2004) Advanced oxidation processes for decolorization of aqueous solution containing acid red G azo dye. Cent Eur J Chem 2(4):573–588

    Article  CAS  Google Scholar 

  • Suteu D, Zaharia C (2008) Removal of textile reactive dye Brilliant Red HE-3B onto materials based on lime and coal ash. Book of Proceedings of 4th International Textile, Clothing & Design Conference—Magic World of Textiles, October 5th–8th, 2008. Dubrovnik: Zagreb ITC&DC Universitary Publishing House, pp 1118–1123

  • Suteu D, Zaharia C (2012) Application of lignin materials for dye removal by sorption processes. In: Paterson RJ (ed) Lignin: properties and applications in biotechnology and bioenergy. Nova Science Publishers Inc., New York, pp 677–688

    Google Scholar 

  • Suteu D, Bilba D, Zaharia C (2002) Kinetic study of blue M-EB dye sorption on ion exchange resins. Hungarian J Ind Chem 30:7–11

    CAS  Google Scholar 

  • Suteu D, Zaharia C, Bilba D, Muresan R, Popescu A, Muresan A (2009a) Decolorization of textile wastewaters—chemical and physical methods. Industria Textila 60(5):254–263

    CAS  Google Scholar 

  • Suteu D, Zaharia C, Muresan A, Muresan R, Popescu A (2009b) Using of industrial waste materials for textile wastewater treatment. Environ Eng Manag J 8(5):1097–1102

    CAS  Google Scholar 

  • Suteu D, Zaharia C, Malutan T (2011a) Removal of orange 16 reactive dye from aqueous solution by wasted sunflower seed shells. J Serb Chem Soc 76(4):907–924

    Article  Google Scholar 

  • Suteu D, Zaharia C, Malutan T (2011b) Biosorbents based on lignin used in biosorption processes from wastewater treatment. A review. In: Paterson RJ (ed) Lignin: properties and applications in biotechnology and bioenergy. Nova Science Publishers Inc., New York, pp 279–305

    Google Scholar 

  • Tang C, Chen V (2002) Nanofiltration of textile wastewater for water reuse. Desalination 143:11–20

    Article  CAS  Google Scholar 

  • Viraraghavan T, Ramakrishna KR (1999) Fly ash for color removal from synthetic dye solutions. Water Qual Res J Can 34(3):505–514

    CAS  Google Scholar 

  • Visa M, Pricop F, Duta A (2011) Sustainable treatment of wastewaters resulted in the textile dyeing industry. Clean Technol Environ Policy 13:855–861

    Article  CAS  Google Scholar 

  • Wiesmann U, Choi IS, Dombrowski EM (2007) Fundamentals of biological wastewater treatment. Wiley-VCH, Weinheim, pp 195–222

    Google Scholar 

  • You SJ, Tseng DH, Deng JY (2008) Using combined membrane processes for textile dyeing wastewater reclamation. Desalination 234(1–3):426–434

    Article  CAS  Google Scholar 

  • Zaharia C (2012) Application of a physico-chemical treatment based on adsorption for industrial effluents. A case study. In: Nedelcu D, Slatineanu L, Mazuru S, Miloselici O (eds) Proceedings of the 16th international conference “Modern technologies, quality and innovation”—ModTech 2012—New face of T.M.C.R., May 24-26, 2012 Sinaia, Romania, Vol II. ModTech Publishing House, Iasi, pp 1069–1072

    Google Scholar 

  • Zaharia C, Suteu D (2012a) Textile organic dyes—characteristics, polluting effects, and separation/elimination procedures from industrial effluents. A critical overview. In: Puzyn T, Mostrag-Szlichtyng A (eds) Organic pollutants—ten years after the Stockholm convention. Environmental and analytical update. Intech Publisher Inc., Rijeka, pp 55–86

    Google Scholar 

  • Zaharia C, Suteu D (2012b) Preliminary study of decolorization by sorption onto sawdust of a real textile effluent. Bul Inst Polit Iaşi, series: Chem Chem Eng LVIII (LXII) (1):9–18

  • Zaharia C, Surpateanu M, Cretescu I, Macoveanu M, Braunstein H (2005) Electrocoagulation/electroflotation—methods applied for wastewater treatment. Environ Eng Manag J 4(4):463–472

    CAS  Google Scholar 

  • Zaharia C, Diaconescu R, Surpăţeanu M (2007) Study of flocculation with Ponilit GT-2 anionic polyelectrolyte applied into a chemical wastewater treatment. Cent Eur J Chem 5(1):239–256

    Article  CAS  Google Scholar 

  • Zaharia C, Suteu D, Muresan A, Muresan R, Popescu A (2009) Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Environ Eng Manag J 8(6):1359–1369

    CAS  Google Scholar 

  • Zaharia C, Suteu C, Muresan A (2012) Options and solutions of textile effluent decolorization using some specific physico-chemical treatment steps. Environ Eng Manag J 11(2):493–509

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Zaharia.

Additional information

Responsible editor: Vinod Kumar Gupta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaharia, C., Suteu, D. Coal fly ash as adsorptive material for treatment of a real textile effluent: operating parameters and treatment efficiency. Environ Sci Pollut Res 20, 2226–2235 (2013). https://doi.org/10.1007/s11356-012-1065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1065-z

Keywords

Navigation