Log in

Response surface modelling of Cr6+ adsorption from aqueous solution by neem bark powder: Box–Behnken experimental approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The main aim of this study is to investigate the combined effect of different operating parameters like adsorbent dose, initial Cr6+ concentration and pH on the removal of Cr6+ from aqueous solution using neem bark powder (NBP). A series of batch experiments were performed to find out the adsorption isotherms and kinetic behaviour of Cr6+ in the aqueous solution. The adsorption process was examined with three independent variables viz. NBP dosage, initial Cr6+ concentrations and pH. Seventeen batch experiments designed by Box–Behnken using response surface methodology were carried out, and the adsorption efficiency was modelled using polynomial equation as the function of the independent variables. Based on the uptake capacity and economic use of adsorbent, the independent variables were optimized by two procedures. The desirability of first and second optimization procedures were found to be 1.00 and 0.84, respectively, which shows that the estimated function may well represent the experimental model. The kinetic study indicated that the rate of adsorption confirms to the pseudo-second-order rate equation. Thermodynamics study indicated that the adsorption process was spontaneous and endothermic in nature. The surface texture changes in NBP were obtained from FT-IR analysis. The optimized result obtained from RAMP plots revealed that the NBP was supposed to be an effective and economically feasible adsorbent for the removal of Cr6+ from an aqueous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14

Similar content being viewed by others

References

  • Agarwal GS, Bhuptawat HK, Chaudhari S (2006) Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresour Technol 97:949–956

    Article  CAS  Google Scholar 

  • Ahalya N, Kanamadi RD, Ramachandra TV (2010) Removal of hexavalent chromium using coffee husk. Int J Environ Pollut 43(1–3):106–116

    Article  CAS  Google Scholar 

  • Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667

    Article  Google Scholar 

  • Amini M, Younesi H, Bahramifar N, Lorestani AAZ, Ghorbani F, Daneshi A, Sharifzadeh M (2008) Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J Hazard Mater 154(1–3):694–702

    Article  CAS  Google Scholar 

  • Anandkumar J, Mandal B (2009) Removal of Cr(VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent. J Hazard Mater 168(2–3):633–640

    Article  CAS  Google Scholar 

  • Ascher KRS (1993) Non conventional insecticidal effects of pesticides available from the Neem tree, Azadirachta indica. Arch Insect Biochem Physiol 22(3–4):433–449

    Article  CAS  Google Scholar 

  • Baik WY, Bae JH, Cho KW, Hartmeier W (2002) Biosorption of heavy metals using whole mold mycelia and parts thereof. Bioresour Technol 81(3):167–170

    Article  CAS  Google Scholar 

  • Belloto RJ Jr, Dean AM, Moustafa MA, Molokhia AM, Gouda MW, Sokoloski TD (1985) Statistical techniques applied to solubility predictions and pharmaceutical formulations: an approach to problem solving using mixture response surface methodology. Int J Pharm 23(2):195–207

    Article  CAS  Google Scholar 

  • Chabaane L, Tahiri S, Albizane A, El Krati M, Cervera ML, de la Guardia M (2011) Immobilization of vegetable tannins on tannery chrome shavings and their use for the removal of hexavalent chromium from contaminated water. Chem Eng J 174(1):310–317

    Article  CAS  Google Scholar 

  • Cimino G, Passerini A, Toscano G (2000) Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Res 34(1):2955–2962

    Article  CAS  Google Scholar 

  • Dakiky M, Khamis M, Manassra A, Mer’eb M (2002) Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv Environ Res 6:533–540

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  Google Scholar 

  • Dubey SP, Gopal K (2007) Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study. J Hazard Mater 145(3):465–470

    Article  CAS  Google Scholar 

  • Elangovan R, Philip L, Chandraraj K (2008) Biosorption of hexavalent and trivalent chromium by palm flower (Borassus aethiopum). Chem Eng J 141:99–111

    Article  CAS  Google Scholar 

  • Forsberg J, Nilsson L (2006) Evaluation of response surface methodologies used in crashworthiness optimization. Int J Impot Eng 32(5):759–777

    Article  Google Scholar 

  • Gao H, LiuY ZG, Xu W, Li T, **a W (2008) Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste-rice straw. J Hazard Mater 150(2):446–452

    Article  CAS  Google Scholar 

  • Garg UK, Kaur MP, Sud D, Garg VK (2008) Removal of nickel(II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresour Technol 99(5):1325–1331

    Article  CAS  Google Scholar 

  • Gonen F, Aksu Z (2008) Use of response surface methodology (RSM) in the evaluation of growth and copper(II) bioaccumulation properties of Candida utilis in molasses medium. J Hazard Mater 154(1–3):731–738

    Article  Google Scholar 

  • Goyal RN, Gupta VK, Sangal A, Bachheti N (2005) Voltammetric determination of uric acid at a fullerene-C 60-modified glassy carbon electrode. Electroanalysis 17:2217–2223

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Oyama M, Bachheti N (2007a) Voltammetric determination of adenosine and guanosine using fullerene-C60-modified glassy carbon electrode. Talanta 71:1110–1117

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Oyama M, Bachheti N (2007b) Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: application in pharmaceutical formulations and biological fluids. Talanta 72:976–983

    Article  CAS  Google Scholar 

  • Goyal RN, Oyama M, Gupta VK, Singh SP, Sharma RA (2008) Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes. Sensors Actuators B Chem 134:816–821

    Article  Google Scholar 

  • Gupta VK, Ali I (2000) Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Sep Purif Technol 18:131–140

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2003) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interface Sci 271:321–328

    Article  Google Scholar 

  • Gupta VK, Kumar P (1999) Cadmium(II)-selective sensors based on dibenzo-24-crown-8 in PVC matrix. Anal Chim Acta 389:205–212

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008a) Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008b) Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154:347–354

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008c) Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study. Colloids Surf B Biointerfaces 64(2):170–178

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008d) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152(1):407–414

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2009) Biosoprtion of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402

    Article  CAS  Google Scholar 

  • Gupta VK, Mohan D, Sharma S (1988) Removal of lead from wastewater using bagasse fly ash—a sugar industry waste material. Sep Sci Technol 33:1331–1343

    Article  Google Scholar 

  • Gupta VK, Rastogi A, Dwivedi MK, Mohan D (1997) Process development for the removal of zinc and cadmium from wastewater using slag—a Blast furnace waste material. Sep Sci Technol 32:2883–2912

    Article  CAS  Google Scholar 

  • Gupta VK, Mohan D, Sharma S, Park KT (1999a) Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ash—a sugar industry waste material. Environmentalist 19:129–136

    Article  Google Scholar 

  • Gupta VK, Mangla R, Khurana U, Kumar P (1999b) Determination of uranyl ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor. Electroanalysis 11(8):573–576

    Article  CAS  Google Scholar 

  • Gupta VK, Srivastav SK, Tyagi R (2000) Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Res 34:1543–1550

    Article  CAS  Google Scholar 

  • Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res 35:1125–1134

    Article  CAS  Google Scholar 

  • Gupta VK, Mangla R, Agarwal S (2002) Pb (II) selective potentiometric sensor based on 4-tert-butylcalix[4]arene in PVC matrix. Electroanalysis 14:1127–1132

    Article  CAS  Google Scholar 

  • Gupta VK, Jain CK, Ali I, Sharma M, Sainia VK (2003) Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res 37:4038–4044

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2004) Removal of chlorophenols from wastewater using red mud: an aluminum industry waste. Environ Sci Technol 38(14):4012–4018

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2006a) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Kurup L, Mittal J (2006b) Adsorption of a hazardous dye, erythrosine, over hen feathers. J Colloid Interface Sci 304(1):52–57

    Article  CAS  Google Scholar 

  • Gupta VK, Jain AK, Kumar P, Agarwal S, Maheshwari G (2006c) Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix. Sensors Actuators B Chem 113(1):182–186

    Article  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2007a) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interface Sci 315(1):87–93

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007b) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309(2):464–469

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007c) Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents, 2007. J Colloid Interface Sci 312(2):292–296

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007d) Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk—an agricultural waste. J Hazard Mater 142:443–448

    Article  CAS  Google Scholar 

  • Gupta VK, Singh AK, Gupta B (2007e) Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes. Anal Chim Acta 583:340–348

    Article  CAS  Google Scholar 

  • Gupta VK, Al Khayat M, Singha AK, Pal MK (2009a) Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases. Anal Chim Acta 634:36–43

    Article  CAS  Google Scholar 

  • Gupta VK, Goyal RN, Sharma RA (2009b) Novel PVC membrane based alizarin sensor and its application; determination of vanadium, zirconium and molybdenum. Int J Electrochem Sci 4:156–172

    CAS  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010a) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342(1):135–141

    Article  CAS  Google Scholar 

  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas TL (2010b) Low cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842

    Article  Google Scholar 

  • Gupta VK, Saleh TA, Ali I, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv. doi:10.1039/C2RA20340E

  • Hamadi NK, Chen XD, Farid MM, Lu MGQ (2001) Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chem Eng J 84(2):95–105

    Article  CAS  Google Scholar 

  • Hosea M, Greene B, McPherson R, Henzl M, Alexander MD, Darnall DW (1986) Accumulation of elemental gold on alga Chlorella vulgaris. Inorg Chim Acta 123(3):161–165

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Sahoo BB, Singh LP (1995) Copper(II)-selective electrodes based on macrocyclic compounds. Anal Proc Incl Anal Commun 32:99–101

    Article  Google Scholar 

  • Jain AK, Gupta VK, Khurana U, Singh LP (1997a) A new membrane sensor for UO22+ ions based on 2-hydroxyacetophenoneoxime–thiourea–trioxan resin. Electroanalysis 9:857–860

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Singh LP, Khurana U (1997b) Macrocycle based membrane sensors for the determination of cobalt(II) ions. Analyst 122:583–586

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Singh LP, Raisoni JR (2006) A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochim Acta 51(12):2547–2553

    Article  CAS  Google Scholar 

  • Jain M, Garg VK, Kadirvelu K (2010) Equilibrium and kinetic studies for sequestration of Cr(VI) from simulated wastewater using sunflower waste biomass. J Hazard Mater 171:328–334

    Article  Google Scholar 

  • Kalathenos P, Baranyi J, Sutherland JP, Roberts TA (1995) A response surface study on the role of some environmental factors affecting the growth of Saccharomyces cerevisiae. Int J Food Microbiol 25(1):63–74

    Article  CAS  Google Scholar 

  • Karthikeyan T, Rajgopal S, Miranda LR (2005) Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J Hazard Mater 124(1–3):192–199

    Article  CAS  Google Scholar 

  • King P, Anuradha K, Lahari SB, Kumar YP, Prasad VSRK (2008) Biosorption of zinc from aqueous solution using Azadirachta indica bark: equilibrium and kinetic studies. J Hazard Mater 152(1):324–329

    Article  CAS  Google Scholar 

  • Liyana-Pathirana C, Shahidi F (2005) Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem 93(1):47–56

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y, Abali Y (2006) Cr(VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: prediction of breakthrough curves. Chem Eng J 119(1):61–68

    Article  CAS  Google Scholar 

  • Mohanty K, Jha M, Biswas MN, Meikap BC (2005) Removal of chromium(VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chem Eng Sci 60(11):3049–3059

    Article  CAS  Google Scholar 

  • Myers RH, Montgomery DC (2001) Response surface methodology, 2nd edn. Wiley, New York

    Google Scholar 

  • Naiya TK, Chowdhury P, Bhattacharya AK, Das SK (2009) Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions. Chem Eng J 148(1):68–79

    Article  CAS  Google Scholar 

  • Ngah WSW, Endud CS, Mayanar R (2002) Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym 50(2):181–190

    Article  CAS  Google Scholar 

  • Nourbakhsh MN, Kılıcarslan S, Ilhan S, Ozdag H (2002) Biosorption of Cr6+, Pb2+ and Cu2+ ions in industrial wastewater on Bacillus sp. Chem Eng J 85(2–3):351–355

    Article  Google Scholar 

  • Nuhoglu Y, Malkoc E, Gurses A, Canpolat N (2002) The removal of Cu(II) aqueous solutions by Ulothrix zonata. Bioresour Technol 85(3):331–333

    Article  CAS  Google Scholar 

  • Ozer A, Gurbuz G, Çalimli A, Korbahti BK (2008) Investigation of nickel(II) biosorption on Enteromorpha prolifera: optimization using response surface analysis. J Hazard Mater 152(2):778–788

    Article  Google Scholar 

  • Pehlivan E, Altun T (2008) Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J Hazard Mater 155(1–2):378–384

    Article  CAS  Google Scholar 

  • Pehlivan E, Arslan G (2007) Removal of metal ions using lignite in aqueous solution-low cost biosorbents. Fuel Process Technol 88(1):99–106

    Article  CAS  Google Scholar 

  • Reddad Z, Gerente C, Andres Y, Ralet MC, Thibault JF, Cloirec PL (2002) Ni(II) and Cu(II) binding properties of native and modified sugar beet pulp. Carbohydr Polym 49(1):23–31

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012) Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ Sci Pollut Res. doi:10.1007/s11356-011-0670-6

  • Sarin V, Pant KK (2006) Removal of chromium from industrial waste by using eucalyptus bark. Bioresour Technol 97:15–20

    Article  CAS  Google Scholar 

  • Sharma DC, Forster CF (1994) A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents. Bioresour Technol 47(3):257–264

    Article  CAS  Google Scholar 

  • Singh AK, Gupta VK, Gupta B (2007) Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal Chim Acta 585(1):171–178

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Dwivedi MK, Jain S (1995) Caesium PVCCrown (dibenzo-24-crown-8) based membrane sensor. Anal Proc Incl Anal Commun 32:21–23

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Mohan D (1997) Removal of lead and chromium by activated slag-a blast-furnace waste. J Environ Eng 123:461–468

    Article  CAS  Google Scholar 

  • Vieira MGA, Oisiovici RM, Gimenes ML, Silva MGC (2008) Biosorption of chromium(VI) using a Sargassum sp. packed-bed column. Bioresour Technol 99(8):3094–3099

    Article  CAS  Google Scholar 

  • Zurera-Cosano G, García-Gimeno RM, Rodríguez-Pérez R, Hervás-Martínez C (2006) Performance of response surface model for prediction of Leuconostoc mesenteroides growth parameters under different experimental conditions. Food Control 17(6):429–438

    Article  Google Scholar 

Download references

Acknowledgments

Both the authors are very thankful to the reviewers for their valuable suggestions and comments which enhanced the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Saravana Kumar.

Additional information

Responsible editor: Vinod Kumar Gupta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M.P.S., Phanikumar, B.R. Response surface modelling of Cr6+ adsorption from aqueous solution by neem bark powder: Box–Behnken experimental approach. Environ Sci Pollut Res 20, 1327–1343 (2013). https://doi.org/10.1007/s11356-012-0981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0981-2

Keywords

Navigation