Log in

Phytoremediation of 2,4-dichlorophenol using wild type and transgenic tobacco plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Introduction

Transgenic plant strategies based on peroxidase expression or overexpression would be useful for phenolic compound removal since these enzymes play an important role in phenolic polymerizing reactions.

Material and methods

Thus, double transgenic (DT) plants for basic peroxidases were obtained and characterized in order to compare the tolerance and efficiency for 2,4-dichlorophenol (2,4-DCP) removal with WT and simple transgenic plants expressing TPX1 or TPX2 gene. Several DT plants showed the expression of both transgenes and proteins, as well as increased peroxidase activity.

Results

DT lines showed higher tolerance to 2,4-DCP at early stage of development since their germination index was higher than that of WT seedlings exposed to 25 mg/L of the pollutant. High 2,4-DCP removal efficiencies were found for WT tobacco plants. TPX1 transgenic plants and DT (line d) reached slightly higher removal efficiencies for 10 mg/L of 2,4-DCP than WT plants, while DT plants (line A) showed the highest removal efficiencies (98%). These plants showed an increase of 21% and 14% in 2,4-DCP removal efficiency for solutions containing 10 and 25 mg/L 2,4-DCP, respectively, compared with WT plants. In addition, an almost complete toxicity reduction of postremoval solutions using WT and DT plants was obtained through AMPHITOX test, which indicates that the 2,4-DCP degradation products would be similar for both plants.

Conclusion

These results are relevant in the field of phytoremediation application and, moreover, they highlight the safety of using DT tobacco plants because nontoxic products were formed after an efficient 2,4-DCP removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  Google Scholar 

  • Aken BV (2008) Transgenic plants for phytoremediation: hel** nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    Article  Google Scholar 

  • Amaya I, Botella MA, de la Calle M et al (1999) Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett 457:80–84

    Article  CAS  Google Scholar 

  • Andreozzi R, Di Somma I, Marotta R, Pinto G, Pollio A, Spasiano D (2011) Oxidation of 2,4-dichlorophenol and 3,4-dichlorophenol by means of Fe(III)-homogeneous photocatalysis and algal toxicity assessment of the treated solutions. Water Research 45(5):2038–2048

    Article  CAS  Google Scholar 

  • Angelini VA, Orejas J, Medina MI, Agostini E (2011) Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots. J Hazard Mat 185:269–274

    Article  CAS  Google Scholar 

  • Antonopoulos VT, Rob A, Ball AS, Wilson MT (2001) Dechlorination of chlorophenols using extracellular peroxidase produced by Streptomyces albus ATCC 3005. Enzyme Microbial Technol 29:62–69

    Article  CAS  Google Scholar 

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  Google Scholar 

  • Botella MA, Quesada MA, Konowicz AK et al (1994) Characterization and in situ localization of a salt-induced tomato peroxidase mRNA. Plant Mol Biol 25:105–114

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Ann Biochem 162:156–159

    Article  CAS  Google Scholar 

  • Coniglio MS, Busto VD, González PS, Medina MI, Milrad S, Agostini E (2008) Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions. Chemosphere 72:1035–1042

    Article  CAS  Google Scholar 

  • De Forchetti SM, Tigier HA (1990) Indole-3-acetic acid oxidase and syringaldazine oxidase activities of peroxidase isozymes in soybean root nodules. Physiol Plant 79:327–330

    Article  Google Scholar 

  • Dere S, Günes T, Sivaci R (1998) Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Trends J Botany 22:13–17

    Google Scholar 

  • Doran PM (2002) Properties and applications of hairy root cultures. In: Oksman-Caldenty KM, Brarz WH (eds) Plant biotechnology and transgenic plants. Marcel Dekker, New York, pp 143–162

    Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  CAS  Google Scholar 

  • Ferrari L, de la Torre F, Demichelis S, García M, Salibián A (2005) Ecotoxicological assessment for receiving waters with the premetamorphic tadpoles acute assay. Chemosphere 59:567–575

    Article  CAS  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Ghioureliotis M, Nicell JA (1999) Assessment of soluble products of peroxidase-catalyzed polymerization of aqueous phenol. Enzyme Microbial Technol 25:185–193

    Article  CAS  Google Scholar 

  • Gong P, Wilke BM, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6- trinitrotoluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157

    Article  CAS  Google Scholar 

  • González PS, Capozucca C, Tigier H, Milrad S, Agostini E (2006) Phytoremediation of phenol from wastewater, by peroxidases of tomato hairy root cultures. Enzyme Microbial Technol 39:647–653

    Article  Google Scholar 

  • Heath RL, Paker L (1986) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  Google Scholar 

  • Herkovits J, Pérez-Coll CS (1999) Bioassays for toxicity test with amphibian embryos (“ANFITOX”). Ingeniería Sanitaria y Ambiental 42:24–30 (in spanish)

    Google Scholar 

  • Hoagland D, Boyer T (1936) General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol 11:477–507

    Article  Google Scholar 

  • Ikehata K, Nicell JA (2000) Color and toxicity removal following tyrosinase-catalyzed oxidation of phenols. Biotechnol Prog 16:533–540

    Article  CAS  Google Scholar 

  • Laurenti E, Ghibaudi E, Ardissone S, Ferrari RP (2003) Oxidation of 2,4-dichlorophenol catalyzed by horseradish peroxidase: characterization of the reaction mechanism by UV–visible spectroscopy and mass spectrometry. J Inorg Biochem 95:171–176

    Article  CAS  Google Scholar 

  • Liu W, Howell JA, Arnot TC, Scott JA (2001) A novel extractive membrane bioreactor for treating biorefractory organic pollutants in the presence of high concentrations of inorganics: application to a synthetic acidic effluent containing high concentrations of chlorophenol and salt. J Membr Sci 1:127–140

    Article  Google Scholar 

  • Medina MI, Botella MA, Quesada MA, Valpuesta V (1997) Expression of highly basic isoperoxidase in NaCl-adapted tomato cells suspension. FEBS Lett 407:357–360

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–479

    Article  CAS  Google Scholar 

  • Paisio C, Agostini E, González P, Bertuzzi M (2009) Lethal and teratogenic effect of phenol on Bufo arenarum embryos. J Hazard Mater 167:64–68

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Quiroga M, Guerrero C, Botella MA et al (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:1119–1127

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmacogenetics 4:225–241

    Article  CAS  Google Scholar 

  • Sosa Alderete LG, Talano MA, Ibañez SG, Purro S, Agostini E, Medina MI (2009) Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. J Biotechnol 139:273–279

    Article  CAS  Google Scholar 

  • Stoilova I, Krastanov A, Stanchev V, Daniel D, Gerginova M, Alexieva Z (2006) Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enzyme Microbial Technol 39:1036–1041

    Article  CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation—a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  CAS  Google Scholar 

  • Talano MA, Frontera S, González P, Medina MI, Agostini E (2010) Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures. J Hazard Mater 176:784–791

    Article  CAS  Google Scholar 

  • Tonegawa M, Dec J, Bollag JM (2003) Use of additives to enhance the removal of phenols from water treated with horseradish and hydrogen peroxide. J Environ Qual 32:1222–1227

    Article  CAS  Google Scholar 

  • UN Water. (2008) Tackling a global crisis: international year of sanitation. http://www.wsscc.org.

  • United States Environmental Protection Agency (1998) Users guide for a computer program for PROBIT. Analysis of date from acute and short-term chronic toxicity test with aquatic organism. Biological methods. USEPA, Environmental Monitoring and Support Lab

    Google Scholar 

  • Wagner M, Nicell JA (2002) Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Res 36:4041–4052

    Article  CAS  Google Scholar 

  • Wevar Oller AL, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA et al (2005) Over-expression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Sci 169:1102–1111

    Article  CAS  Google Scholar 

  • Yu J, Taylor KE, Zou H, Biswas N, Bewtra JK (1994) Phenol conversion and dimeric intermediates in horseradish peroxidase-catalyzed phenol removal from water. Environ Sci Technol 28:2154–2160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MAT, PSG, and EA are members of the research career from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina). CEP have a fellowship from CONICET-Ministerio de Ciencia y Tecnología, Córdoba. We wish to thank PPI (SECyT-UNRC), CONICET, MINCyT Córdoba, and PICTO (FONCyT-SECyT-UNRC) for financial support. The authors acknowledge Iliana Martínez for language correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melina A. Talano.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talano, M.A., Busso, D.C., Paisio, C.E. et al. Phytoremediation of 2,4-dichlorophenol using wild type and transgenic tobacco plants. Environ Sci Pollut Res 19, 2202–2211 (2012). https://doi.org/10.1007/s11356-011-0724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0724-9

Keywords

Navigation