Log in

The Potential of MEMS for Advancing Experiments and Modeling in Cell Mechanics

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Response to mechanical stimuli largely dictates cellular form and function. A host of extraordinary yet unexplained responses have been identified within the hierarchical cell structure. As experimental and model-based investigations in cell mechanics advance, the underlying structure-function mechanisms dictating these responses emerge. Here we explore the potential of microelectromechanical systems (MEMS) for advancing understanding of cell mechanics. To motivate the discussion, existing experimental techniques are summarized. Interrelated model-based approaches, which aim to interpret or predict observed results, are also outlined. We then focus on a representative set of MEMS-based devices designed for investigations in cell mechanics and point to the fact that, while these devices have yet to maximize their functionality through higher levels of sensor/actuator integration, they are highly complementary to existing techniques. In closing, novel MEMS sensor and actuator schemes that have yet to materialize in this field are discussed to motivate the next generation of MEMS for investigations in cell mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu C, Bao G, Wang N (2000) Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng 02:189–226.

    Google Scholar 

  2. Maniotis A, Chen C, Ingber D (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. PNAS 97:849–854.

    Google Scholar 

  3. Ingber D (1997) Tensegrity: The architectural basis of cellular mechanotransduction. Annu Rev Physiol 57:575–599.

    Google Scholar 

  4. Engler A, Sen S, Sweeney H, Discher D (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689.

    Google Scholar 

  5. Chicurel M, Chen C, Ingber D (1998) Cellular control lies in the balance of forces. Curr Opin Cell Biol 10:232–239.

    Google Scholar 

  6. Discher D, Janmey P, Wang Y-L (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143.

    Google Scholar 

  7. Huang H, Kamm R, Lee R (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 287:C1–C11.

    Google Scholar 

  8. Suresh S, Spatz J, Mills J, Micoulet A, Dao M, Lim C, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomaterialia 1:15–30.

    Google Scholar 

  9. Shelby J, White J, Ganesan K, Rathod R, Chiu D (2003) A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. PNAS 100:14618–14622.

    Google Scholar 

  10. Kamm R, Kaazempur-Mofrad M (2004) On the molecular basis for mechanotransduction. Mechanics and Chemistry of Biosystems 1:201–210.

    Google Scholar 

  11. Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nature Materials 2:715–725.

    Google Scholar 

  12. Van Vliet KJ, Bao G, Suresh S (2003) The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater 51:5881–5905.

    Google Scholar 

  13. Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33:15–22.

    Google Scholar 

  14. Rand R, Burton A (1964) Mechanical properties of the red cell membrane. Biophys J 4:115–135.

    Google Scholar 

  15. Mahaffy R, Park S, Gerde E, Kas J, Shih C (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86:1777–1793.

    Google Scholar 

  16. Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscope. Atomic Force Microscopy in Cell Biology 68:67–90.

    Google Scholar 

  17. Charras G, Lehenkari P, Horton M (2001) Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy 86:85–95.

    Google Scholar 

  18. Vaziri A, Lee H, Kaazempur-Mofrad M (2006) Deformation of the nucleus under indentation: mechanics and mechanisms. J Mater Res 21:2126–2135.

    Google Scholar 

  19. Panorchan P, George J, Wirtz D (2006) Probing intermollecular interactions between vascular endothelial cadherins pairs at single-molecule resolution and in living cells. J Mol Biol 358:665–674.

    Google Scholar 

  20. Panorchan P, Thompson M, Davis K, Tseng Y, Konstantopoulos K, Wirtz D (2006) Single-molecule analysis of cadherin-mediated cell-cell adhesion. J Cell Sci 119:66–74.

    Google Scholar 

  21. Florin E-L, Moy V, Gaub H (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417.

    Google Scholar 

  22. Hyonchol K, Arakawa H, Osada T, Ikai A (2002) Quantification of fibronectin and cell surface interactions by AFM. Colloids Surf B Biointerfaces 25:33–43.

    Google Scholar 

  23. Mathur A, Trusky G, Reichert W (2000) Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys J 78:1725–1735.

    Google Scholar 

  24. Hochmuth RM, Shao J-Y, Dai J, Sheetz M (1996) Deformation and flow of membranes into tethers extracted from neuronal growth cones. Biophys J 70:359–369.

    Google Scholar 

  25. Dai J, Sheetz M (1995) Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J 68:988–996.

    Google Scholar 

  26. Dai J, Ting-Beall H, Sheetz M (1997) The secretion-coupled endocytosis correlates with membrane tension chances in RBL 2H3 cells. J Gen Physiol 110:1–10.

    Google Scholar 

  27. Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51:2259–2280.

    Google Scholar 

  28. Henon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J 76:1145–1151.

    Google Scholar 

  29. Lim CT, Dao M, Suresh S, Sow CH, Chew KT (2004) Large deformation of living cells using laser traps. Acta Mater 52:1837–1845.

    Google Scholar 

  30. Mills JP, Qie L, Dao M, Lim CT, Suresh S (2004) Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mechanics and Chemistry of Biosystems 1:169–180.

    Google Scholar 

  31. Svoboda K, Block S (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285.

    Google Scholar 

  32. Mehta A, Rief M, Spudich J, Smith D, Simmons R (1999) Single-molecule biomechanics with optical methods. Science 283:1689–1695.

    Google Scholar 

  33. Wen J-D, Manosas M, Li P, Smith S, Bustamante C, Ritort F, Tinoco I (2007) Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results. Biophys J 92:2996–3009.

    Google Scholar 

  34. Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75:2038–2049.

    Google Scholar 

  35. Haber C, Wirtz D (2000) Magnetic tweezers for DNA micromanipulation. Rev Sci Instrum 71:4561–4570.

    Google Scholar 

  36. Alenghat F, Fabry B, Tsai K, Goldmann W, Ingber D (2000) Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem Biophys Res Commun 277:93–99.

    Google Scholar 

  37. Chen J, Fabry B, Schiffrin E, Wang N (2001) Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am J Physiol Cell Physiol 280:C1475–C1484.

    Google Scholar 

  38. Wang N, Butler J, Ingber D (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127.

    Google Scholar 

  39. Masksym G, Fabry B, Butler J, Navajas D, Tschumperlin D, Laporte J, Fredberg J (2000) Mechanical properties of cultured human airway smooth muscle cells from 0.05 to 0.4 Hz. J Appl Physiol 89:1619–1632.

    Google Scholar 

  40. Nollmann M, Stone M, Bryant Z, Gore J, Crisona N, Hong S-C, Mitelheiser S, Maxwell A, Bustamante C, Cozzarelli N (2007) Multiple modes of Escherichia coli DNA gyrase activity revealed by force and torque. Nature Structural and Molecular Biology 14:264–271.

    Google Scholar 

  41. Oroszi L, Galajda P, Kirei H, Bottka S, Ormos P (2006) Direct measurement of torque in an optical trap and its application to double-strand DNA. Phys Rev Lett 97:058301.

    Google Scholar 

  42. Trimmer W (1989) Microrobots and micromechanical systems. Sens Actuators 19:267–287.

    Google Scholar 

  43. Crick F, Hughes A (1950) The physical properties of cytoplasm: a study by means of the magnetic particle method, Part I. Experimental. Exp Cell Res 1:37–80.

    Google Scholar 

  44. Tseng Y, Kole T, Wirtz D (2002) Micromechanical map** of live cells by multiple-particle-tracking microrheology. Biophys J 83:3162–3176.

    Google Scholar 

  45. Dong C, Lei X (2000) Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. J Biomech 33:35–43.

    Google Scholar 

  46. Levesque M, Nerem R, Sprague E (1990) Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11:702–707.

    Google Scholar 

  47. Basso N, Heersche J (2002) Characteristics of in vitro osteoblastic cell loading models. Bone 30:347–351.

    Google Scholar 

  48. Trepat X, Grabulosa M, Puig F, Maksym G, Navajas D, Farre R (2004) Viscoelasticity of human alveolar epithelial cells subjected to stretch. Am J Physiol Lung Cell Mol Physiol 287:1025–1034.

    Google Scholar 

  49. Trepat X, Puig F, Gavara N, Fredberg J, Farre R, Navajas D (2006) Effect of stretch on structural integrity and micromechanics of human alveolar epithelial cell monolayers exposed to thrombin. Am J Physiol Lung Cell Mol Physiol 290:L1104–L1110.

    Google Scholar 

  50. Geerts H, De Brabander M, Nuydens R, Geuens S, Moeremans M, De Mey J, Hollenbeck P (1987) Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys J 52:775–782.

    Google Scholar 

  51. Daniels B, Masi B, Wirtz D (2006) Probing single-cell micromachines in vivo: the microrheology of C. elegans develo** embryos. Biophys J 90:4712–4719.

    Google Scholar 

  52. Yamada S, Wirtz D, Kuo S (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys J 78:1736–1747.

    Google Scholar 

  53. Burton K, Park J, Taylor D (1999) Keratocytes generate traction forces in two phases. Mol Biol Cell 10:3745–3769.

    Google Scholar 

  54. Burton K, Taylor D (1997) Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385:450–454.

    Google Scholar 

  55. Lo C-M, Wang H-B, Dembo M, Wang Y-L (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152.

    Google Scholar 

  56. Beningo K, Wang Y-L (2002) Flexible substrata for the detection of cellular traction forces. Trends Cell Biol 12:79–84.

    Google Scholar 

  57. Beningo K, Wang Y-L (2002) Flexible polyacrylamide substrates for the analysis of mechanical interactions at cell-substrate adhesions. Methods Cell Biol 69:325–339.

    Google Scholar 

  58. Munevar S, Wang Y-L, Dembo M (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80:1744–1757.

    Google Scholar 

  59. Zhao Y, Zhang X (2006) Cellular mechanics study in cardiac myocytes using PDMS pillars array. Sens Actuators A 125:398–404.

    Google Scholar 

  60. Tan J, Tien J, Pirone D, Gray D, Bhadriraju K, Chen C (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. PNAS 100:1484–1489.

    Google Scholar 

  61. Roure O, Saez A, Buguin A, Austin R, Chavrier P, Silberzan P, Ladoux B (2005) Force map** in epithelial cell migration. PNAS 102:2390–2395.

    Google Scholar 

  62. Petronis S, Gold J, Kasemo B (2003) Microfabricated force-sensitive elastic substrates for investigation of mechanical cell-substrate interactions. J Micromechanics Mircoengineering 13:900–913.

    Google Scholar 

  63. Sniadecki N, Anguelouch A, Yang M, Lamb C, Liu Z, Kirschner S, Liu Y, Reich D, Chen C (2007) Magnetic microposts as an approach to apply forces to living cells. PNAS 104:14553–14558.

    Google Scholar 

  64. **a Y, Whitesides G (1998) Soft lithography. Annu Rev Mater Sci 28:153-184.

    Google Scholar 

  65. Dike L, Chen C, Mrksich M, Tien J, Whitesides G, Ingber D (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev Biol 35:441–448.

    Google Scholar 

  66. Cavalcanti-Adam E, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz J (2007) Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 92:2964–2974.

    Google Scholar 

  67. Gabrielson T (1993) Mechanical-thermal noise in micromachined acoustic and vibration sensors. IEEE Trans Electron Devices 40:903–909.

    Google Scholar 

  68. Rocha L, Cretu E, Wolffenbuttel R (2005) Measuring and interpreting the mechanical-thermal noise spectrum in a MEMS. J Micromechanics Mircoengineering 15:S30–S38.

    Google Scholar 

  69. Johnson JB (1928) Thermal agitation of electricity in conductors. Phys Rev 32:97.

    Google Scholar 

  70. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110–113.

    Google Scholar 

  71. Mamin H, Rugar D (2001) Sub-attonewton force detection at millikelvin temperatures. Appl Phys Lett 79:3358–3360.

    Google Scholar 

  72. Yamada H, Kobayashi K (2007) Dynamic force microscopy for molecular-scale investigations of organic materials in various environments. In: Bhushan B, Kawata S (eds) Applied scanning probe methods, vol. VI. Springer, pp 205–245.

  73. Gittes F, Schmidt C (1998) Thermal noise limitations on micromechanical experiments. Eur Biophys J 27:75–81.

    Google Scholar 

  74. Villanueva G, Montserrat J, Perez-Murano F, Rius G, Bausells J (2004) Submicron piezoresistive cantilevers in a CMOS-compatible technology for intermolecular force detection. Microelectron Eng 73–74:480–486.

    Google Scholar 

  75. Prasad V, Semwogerere D, Weeks E (2007) Confocal microscopy of colloids. J Phys Condens Matter 19:113102.

    Google Scholar 

  76. Lichtman J, Conchello J-A (2005) Fluorescence microscopy. Nature Methods 2:910–919.

    Google Scholar 

  77. http://probes.invitrogen.com/handbook/. The handbook—a guide to fluorescent probes and labeling technologies, tenth edition. Invitrogen Corp.

  78. Semwogerere D, Weeks E (2005) Confocal microscopy. In: Encyclopedia of biomaterials and biomedial engineering. Taylor and Francis, New York.

  79. Roy P, Rajfur Z, Pomorski P, Jacobson K (2002) Microscope-based techniques to study cell adhesion and migration. Nat Cell Biol 4:E91–E96.

    Google Scholar 

  80. Vaziri A, Gopinath A (in press) Computational approaches in cell and biomolecular mechanics.

  81. Gov N, Safran S (2005) Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys J 88:1859–1874.

    Google Scholar 

  82. Lim C, Zhou E, Quek S (2006) Mechanical models for living cells—a review. J Biomech 29:195–216.

    Google Scholar 

  83. Kol N, Shi Y, Tsitov M, Barlam D, Shneck R, Kay M, Rousso I (2007) A stiffness switch in HIV. Biophys J 92:1777–1783.

    Google Scholar 

  84. Vaziri A, Mofrad M (2007) Mechanics and deformation of the nucleus in micropipette aspiration experiment. J Biomech 40:2053–2062.

    Google Scholar 

  85. Vaziri A, Lee H, Mofrad M (2006) Deformation of the cell nucleus under indentation: Mechanics and mechanisms. J Mater Res 21:2126–2135.

    Google Scholar 

  86. Curvelier D, Théry M, Chu Y, Dufour S, Thiéry J, Bornens M, Nassoy P, Mahadevan L (2007) The universal dynamics of cell spreading. Curr Biol 17:694–699.

    Google Scholar 

  87. Mogilner A, Edelstein-Keshet L (2002) Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys J 83:1237–1258.

    Google Scholar 

  88. DiMilla P, Barbee K, Lauffenburger D (1991) Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 60:15–37.

    Google Scholar 

  89. Dickinson R, Tranquillo R (1993) A stochastic model for adhesion-mediated cell random motility and haptotaxis. J Math Biol 31:563–600.

    MATH  Google Scholar 

  90. Balaeff A, Mahadevan L, Schulten K (2006) Modeling DNA loops using the theory of elasticity. Phys Rev E 73:031919.

    MathSciNet  Google Scholar 

  91. Gov N (2007) Active elastic network: cytoskeleton of the red blood cells. Phys Rev E 75:011921.

    Google Scholar 

  92. Wang N, Naruse K, Stamenovic D, Fredberg J, Mijailovich S, Tolic-Norrelykke I, Polte T, Mannix R, Ingber D (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci 98:7765–7770.

    Google Scholar 

  93. Canadas P, Laurent V, Oddou C, Isabey D, Wendling S (2002) A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton. J Theor Biol 218:155–173.

    MathSciNet  Google Scholar 

  94. Canadas P, Wendling-Mansuy S, Isabey D (2006) Frequency response of a viscoelastic tensegrity model: structural rearrangement contribution to cell dynamics. ASME J Biomech Eng 128:487–495.

    Google Scholar 

  95. Lu H, Schulten K (1999) Steered molecular dynamics simulations of force-induced protein domain unfolding. Proteins 35:453–463.

    Google Scholar 

  96. Lu H, Schulten K (2000) The key event in forceinduced unfolding of Titin’s immunoglobulin domains. Biophys J 79:51–65.

    Google Scholar 

  97. Buehler MJ (2006) Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture and self-assembly. J Mater Res 21:1947–1961.

    Google Scholar 

  98. Buehler MJ (2006) Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci 103:12285–12290.

    Google Scholar 

  99. Stultz C, Edelman E (2003) A structural model that explains the effects of hyperglycemia on collagenolysis. Biophys J 85:2198–2204.

    Google Scholar 

  100. Deshpande V, McMeeking R, Evans A (2006) A bio-chemical model for cell contractility. PNAS 103:14015–14020.

    Google Scholar 

  101. Herant M, Marganski W, Dembo M (2003) The mechanics of neutrophils: synthetic modeling of three experiments. Biophys J 84:3389–3413.

    Google Scholar 

  102. Vaziri A, Gopinath A, Deshpande V (2007) Continuum-based computational models in cell and nuclear mechanics. Journal of Mechanics of Materials and Structures 2(6):1169–1191.

    Google Scholar 

  103. Hu S, Chen J, Fabry B, Numaguchi Y, Gouldstone A, Ingber D, Fredberg J, Butler J, Wang N (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol 285:C1082–C1090.

    Google Scholar 

  104. Hu S, Chen J, Butler J, Wang N (2005) Prestress mediates force propagation into the nucleus. Biochem Biophys Res Commun 329:423–428.

    Google Scholar 

  105. Wang N, Suo Z (2005) Long-distance propagation of forces in a cell. Biochem Biophys Res Commun 328:1133–1138.

    Google Scholar 

  106. Blumenfeld R (2006) Isostaticity and controlled force transmission in the cytoskeleton: a model awaiting experimental evidence. Biophys J 91:1970–1983.

    Google Scholar 

  107. Chaturvedi R, Huang C, Kazmierczak B, Schneider T, Izaguirre A, Glimm T, Hentschel H, Glazier J, Newman S, Alber M (2005) On multiscale approaches to three dimensional modeling of morphogenesis. Journal of Royal Society Interface 2:237–253.

    Google Scholar 

  108. Dao M, Li J, Suresh S (2006) Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater Sci Eng C 26:1232–1244.

    Google Scholar 

  109. Gracheva M, Othmer H (2004) A continuum model of motility in ameboid cells. Bull Math Biol 66:167–193.

    MathSciNet  Google Scholar 

  110. Liu A, Liu Y, Farrell D, Zhang L, Wang C, Fukui Y, Patankar N, Zhang Y, Bajaj C, Lee J, Hong J, Chen X, Hsu H (2006) Immersed finite element method and its applications to biological systems. Comput Methods Appl Mech Eng 195:1722–1749.

    MATH  MathSciNet  Google Scholar 

  111. Ionides E, Fang K, Isseroff R, Oster G (2004) Stochastic models for cell motion and taxis. J Math Biol 48:23–37.

    MATH  MathSciNet  Google Scholar 

  112. Rubinstein B, Jacobson K, Mogilner A (2005) Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Modeling & Simulation 3:413–439.

    MATH  MathSciNet  Google Scholar 

  113. Maree A, Jilkine A, Dawes A, Grieneisen V, Edelstein-Keshet L (2006) Polarization and movement of keratocytes: a multiscale modelling approach. Bull Math Biol 68:1169–1211.

    Google Scholar 

  114. Zaman M, Trapini M, Sieminski A, MacKellar D, Gong H, Wells R, Lauffenburger D, Matsudaira P (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci 103:10889–10894.

    Google Scholar 

  115. **ng J, Liao J-C, Oster G (2005) Making ATP. PNAS 102:15539–16546.

    Google Scholar 

  116. Liao J-C, Sun S, Chandler D, Oster G (2004) Conformational states of ATP:MG in water. Euro Biophys J 34:29.

    Google Scholar 

  117. Zaman M, Kaazempur-Mofrad M (2004) How flexible is α-actinin’s rod domain? Mech Chem Biosys 1:291–302.

    Google Scholar 

  118. Yeung A, Evans E (1989) Cortical shell–liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys J 56:139–149.

    Google Scholar 

  119. Kan H, Shyy W, Udaykumar H, Vigneron P, Tran-Son-Tay R (1999) Effects of nucleus on leukocyte recovery. Ann Biomed Eng 27:648–655.

    Google Scholar 

  120. McElfresh M, Baesu E, Balhorn R, Belak J, Allen M, Rudd R (2002) Combining constitutive materials modeling with atomic force microscopy to understand the mechanical properties of living cells. Proc Natl Acad Sci 99:6493–6497.

    Google Scholar 

  121. Yang S, Saif M (2007) Force response and actin remodeling (agglomeration) in fibroblasts due to lateral indentation. Acta Biomaterialia 3:77–87.

    Google Scholar 

  122. Yang S, Saif MTA (2005) Micromachined force sensors for the study of cell mechanics. Rev Sci Instrum 76:044301.

    Google Scholar 

  123. Yang S, Saif T (2005) Reversible and repeatable linear local cell force response under large stretches. Exp Cell Res 305:42–50.

    Google Scholar 

  124. Serrel D, Oreskovic T, Slifka A, Mahajan R, Finch D (2007) A uniaxial bioMEMS device for quantitative force-displacement measurements. Biomedical Microdevices 9:267–275.

    Google Scholar 

  125. Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci U S A 102:14503–14508.

    Google Scholar 

  126. Zhu Y, Moldovan N, Espinosa HD (2005) A microelectromechanical load sensor for in situ electron and X-ray microscopy tensile testing of nanostructures. Appl Phys Lett 86:013506.

    Google Scholar 

  127. Galbraith C, Sheetz M (1997) A micromachined device provides a new bend on fibroblast traction forces. PNAS 94:9114–9118.

    Google Scholar 

  128. Harris A, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179.

    Google Scholar 

  129. Lin G, Pister K, Roos K (2000) Surface micromachined polysilicon heart cell force transducer. Journal of Microelectromechanical Systems 9:9–17.

    Google Scholar 

  130. Lin G, Wu V, Hainley R, Flanagan L, Monuki E, Tang W (2004) Development of a MEMS microsystem to study the effect of mechanical tension on cerebral cortex neurogenesis. In: Proceedings of the 26th annual international conference of the IEEE EMBS, San Francisco, CA.

  131. Wu V, Law T, Hsu C-M, Lin G, Tang W, Monuki E (2005) MEMS platform for studying neurogenesis under controlled mechanical tension. In: Proceedings of the 3rd Annual International IEEE EMBS Special Topic, Kahuku, Oahu, Hawaii.

  132. Koch S, Thayer G, Corwin A, de Boer M (2006) Micromachined piconewton force sensor for biophysics investigations. Appl Phys Lett 89:173901.

    Google Scholar 

  133. Eppell S, Smith B, Kahn H, Ballarini R (2005) Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. Journal of the Royal Society Interface 3:117–121.

    Google Scholar 

  134. Scuor N, Gallina P, Panchawagh H, Mahajan R, Sbaizero O, Sergo V (2006) Design of a novel MEMS platform for the biaxial stimulation of living cells. Biomedical Microdevices 8:239–246.

    Google Scholar 

  135. Sun Y, Nelson B, Potasek D, Enikov E (2002) A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives. J Micromechanics Mircoengineering 12:832–840.

    Google Scholar 

  136. Li M, Tang H, Roukes M (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotechnology 2:114–120.

    Google Scholar 

  137. Bell DJ, Lu TJ, Fleck NA, Spearing SM (2005) MEMS actuators and sensors: observations on their performance and selection for purpose. J Micromechanics Microengineering 15:S153–S164.

    Google Scholar 

  138. Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in-situ microscopy testing: design and characterization. J Micromechanics Microengineering 16:242–253.

    Google Scholar 

  139. Conway N, Traina Z, Kim S-G (2007) A strain amplifying piezoelectric MEMS actuator. J Micromechanics Mircoengineering 17:781–787.

    Google Scholar 

  140. Indermuhle P-F, Schurmann G, Racine G-A, de Rooij N (1997) Atomic force microscopy using cantilevers with integrated tips and piezoelectric layers for actuation and detection. J Micromechanics Mircoengineering 7:218–220.

    Google Scholar 

  141. Park S-H, Lim E-C, Park K-S, Kang D-H, Han S-O, Lee D-C (1997) The dielectric properties of functional PVDF films by physical vapor deposition. In: Proceedings of the 5th International conference on properties and applications of dielectric materials, Seoul, Korea.

  142. Atkinson G, Pearson R, Ouaies Z, Park C, Harrison J, Wilson W, Midkiff J (2003) Piezoelectric polyimide MEMS process. In: Proceedings of the NASA VLSI Symposium.

  143. Bogart G, Carr D, Rogers J (2006) Fabrications of PVDF gratings: Final report for LDRD Project 79884. Sand Report SAND2005-6706. Sandia National Laboratories.

  144. Jager EWH, Smela E, Inganas O (2000) Microfabricating conjugated polymer actuators. Science 290:1540–1545.

    Google Scholar 

  145. Smela E (2003) Conjugated polymer actuators for biomedical applications. Adv Mater 15:481–494.

    Google Scholar 

  146. Urdaneta M, Liu Y, Christophersen M, Prakash S, Abshire P, Smela E (2005) Integrating conjugated polymer microactuators with CMOS sensing circuitry for studying living cells. In: Smart structures and materials 2005: Electroactive Polymer Actuators and Devices (EAPAD).

  147. Dargaville T, Celina M, Elliot J, Chaplya P, Jones G, Mowery D, Assink R, Clough R, Martin J (2005) Characterization, performance and optimization of PVDF as a piezoelectric film for advanced space mirror concepts. Sandia Report SAND2005-6846. Sandia National Laboratories.

  148. Zu J, Qu Q, Cheng G (2004) Analytical modeling and quantitative analysis of scratch drive actuator. In: Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04).

  149. de Boer M, Luck D, Ashurst W, Maboudian R, Corwin A, Walraven J, Redmond J (2004) High-performance surface-micromachined inchworm actuator. Journal of Microelectromechanical Systems 13:63–74.

    Google Scholar 

  150. Bronson J, Wiens G, Tran-Son-Tay R (2004) A feasibility study on MEMS test-structures for analysis of biological cells and tissue. In: Proceedings of 2004 Florida Conference on Recent Advances in Robotics, University of Central Florida in Orlando, Florida.

  151. Liu W, Chen C (2005) Engineering biomaterials to control cell function. Materials Today 8:28–35.

    Google Scholar 

  152. Dusseiller M, Smith M, Vogel V, Textor M (2006) Microfabricated three-dimensional environments for single cell studies. Biointerphases 1:P1–P4.

    Google Scholar 

  153. Salaita K, Wang Y, Mirkin C (2007) Applications of dip-pen nanolithography. Nature Nanotechnology 2:145–155.

    Google Scholar 

  154. Lenhert S, Sun P, Wang Y, Fuchs H, Mirkin C (2007) Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid mulitlayer patterns. Small 3:71–75.

    Google Scholar 

  155. Sameoto D, Hubbard T, Kujath M (2004) Operation of electrothermal and electrostatic MUMPs microactuators underwater. J Micromechanics Microengineering 2:250–255.

    Google Scholar 

  156. Sounart TL, Michalske TA, Zavadil KR (2005) Frequency-dependent electrostatic actuation in microfluidic MEMS. Journal of Microelectromechanical Systems 14:125–133.

    Google Scholar 

  157. Tinoco I, Li P, Bustamante C (2006) Determination of thermodynamics and kinetics of RNA reactions by force. Q Rev Biophys 39:325–360.

    Google Scholar 

  158. Hanley WD, Wirtz D, Konstantopoulos K (2004) Distinct kinetic and mechanical properties govern selectin-leukocyte interactions. J Cell Sci 117:2503–2511.

    Google Scholar 

  159. Miyazaki H, Hasegawa Y, Hayashi K (2000) A newly designed tensile tester for cells and its application to fibroblasts. J Biomech 33:97–104.

    Google Scholar 

  160. Sun S, Wirtz D (2006) Mechanics of enveloped virus entry into host cells. Biophysical Journal: Biophysical Letters 90:L10–L12.

    Google Scholar 

  161. del Monte F, O’Gara P, Poole-Wilson P, Yacoub M, Harding S (1995) Cell geometry and contractile abnormalities of myocytes from failing human left ventricle. Cardiovasc Res 30:281–290.

    Google Scholar 

  162. Campbell N, Mitchell L, Reece J (2002) Biology concepts and connections: Benjamin-Cummings, Redwood City, CA.

  163. Pan W, Peterson E, Cai N, Ma G, Lee J, Feng Z, Liao K, Leong K (2005) Viscoelastic properties of human mesenchymal stem cells. In: Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference, Shanghai, China.

  164. Morii T, Mizumo R, Haruta H, Okada T (2004) An AFM study of the elasticity of DNA molecules. Thin Solid Films 464-465:456–458.

    Google Scholar 

  165. Fauver M, Dunaway D, Lilienfeld D, Craighead H, Pollack G (1998) Microfabricated cantilevers for measurement of subcellular and molecular forces. IEEE Trans Biomed Eng 45:891–898.

    Google Scholar 

  166. Stamenovic D, Ingber D (2002) Models of cytoskeletal mechanics of adherent cells. Biomechanics and Modeling in Mechanobiology 1:95–108.

    Google Scholar 

  167. Ingber D (2003) Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 15:1397–1408.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Espinosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loh, O., Vaziri, A. & Espinosa, H.D. The Potential of MEMS for Advancing Experiments and Modeling in Cell Mechanics. Exp Mech 49, 105–124 (2009). https://doi.org/10.1007/s11340-007-9099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-007-9099-8

Keywords

Navigation