Log in

Liver damage and systemic inflammatory responses are exacerbated by the genetic deletion of CD39 in total hepatic ischemia

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Liver ischemia reperfusion injury is associated with both local damage to the hepatic vasculature and systemic inflammatory responses. CD39 is the dominant vascular endothelial cell ectonucleotidase and rapidly hydrolyses both adenosine triphosphate (ATP) and adenosine diphosphate to adenosine monophosphate. These biochemical properties, in tandem with 5′-nucleotidases, generate adenosine and potentially illicit inflammatory vascular responses and thrombosis. We have evaluated the role of CD39 in total hepatic ischemia reperfusion injury (IRI). Wildtype mice, Cd39-hemizygous mice (+/−) and matched Cd39-null mice (−/−); (n = 25 per group) underwent 45 min of total warm ischemia with full inflow occlusion necessitating partial hepatectomy. Soluble nucleoside triphosphate diphosphohydrolase (NTPDases) or adenosine/amrinone were administered to wildtype (n = 6) and Cd39-null mice (n = 6) in order to study protective effects in vivo. Parameters of liver injury, systemic inflammation, hepatic ATP determinations by P31-NMR and parameters of lung injury were obtained. All wildtype mice survived up to 7 days with minimal biochemical disturbances and minor evidence for injury. In contrast, 64% of Cd39+/− and 84% of Cd39-null mice required euthanasia or died within 4 h post-reperfusion with liver damage and systemic inflammation associated with hypercytokinemia. Hepatic ATP depletion was pronounced in Cd39-null mice posthepatic IRI. Soluble NTPDase or adenosine administration protected Cd39-deficient mice from acute reperfusion injury. We conclude that CD39 is protective in hepatic IRI preventing local injury and systemic inflammation in an adenosine dependent manner. Our data indicate that vascular CD39 expression has an essential protective role in hepatic IRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thiagarajan RR, Winn RK, Harlan JM (1997) The role of leukocyte and endothelial adhesion molecules in ischemia-reperfusion injury. Thromb Haemost 78:310–314

    PubMed  CAS  Google Scholar 

  2. Milazzo VJ, Ferrante RJ, Sabido F et al (1996) Time course of leukocyte adhesion to endothelium in ischemia-reperfusion. J Surg Res 61:139–142

    Article  PubMed  CAS  Google Scholar 

  3. Squadrito F, Altavilla D, Squadrito G et al (1997) The involvement of tumour necrosis factor-alpha in the protective effects of 17 beta oestradiol in splanchnic ischaemia-reperfusion injury. Br J Pharmacol 121:1782–1788

    Article  PubMed  CAS  Google Scholar 

  4. Rose S, Floyd RA, Eneff K et al (1994) Intestinal ischemia: reperfusion-mediated increase in hydroxyl free radical formation as reported by salicylate hydroxylation. Shock 1:452–456

    Article  PubMed  CAS  Google Scholar 

  5. Kaczmarek E, Erb L, Koziak K et al (2005) Modulation of endothelial cell migration by extracellular nucleotides: involvement of focal adhesion kinase and phosphatidylinositol 3-kinase-mediated pathways. Thromb Haemost 93:735–742

    PubMed  CAS  Google Scholar 

  6. Marcus AJ, Broekman MJ, Drosopoulos JH et al (1997) The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 99:1351–1360

    Article  PubMed  CAS  Google Scholar 

  7. Corriden R, Chen Y, Inoue Y et al (2008) Ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) regulates neutrophil chemotaxis by hydrolyzing released ATP to adenosine. J Biol Chem 283:28480–28486

    Article  PubMed  CAS  Google Scholar 

  8. Body SC (1996) Platelet activation and interactions with the microvasculature. J Cardiovasc Pharmacol 27(Suppl 1):S13–S25

    Article  PubMed  CAS  Google Scholar 

  9. Goepfert C, Imai M, Brouard S et al (2000) CD39 modulates endothelial cell activation and apoptosis. Mol Med 6:591–603

    PubMed  CAS  Google Scholar 

  10. Candinas D, Koyamada N, Miyatake T et al (1996) Loss of rat glomerular ATP diphosphohydrolase activity during reperfusion injury is associated with oxidative stress reactions. Thromb Haemost 76:807–812

    PubMed  CAS  Google Scholar 

  11. Enjyoji K, Sevigny J, Lin Y et al (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5:1010–1017

    Article  PubMed  CAS  Google Scholar 

  12. Enjyoji K, Kotani K, Thukral C et al (2008) Deletion of cd39/entpd1 results in hepatic insulin resistance. Diabetes 57:2311–2320

    Article  PubMed  CAS  Google Scholar 

  13. Mizumoto N, Kumamoto T, Robson SC et al (2002) CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med 8:358–365

    Article  PubMed  CAS  Google Scholar 

  14. Deaglio S, Dwyer KM, Gao W et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  PubMed  CAS  Google Scholar 

  15. Smedsrod B, De Bleser PJ, Braet F et al (1994) Cell biology of liver endothelial and Kupffer cells. Gut 35:1509–1516

    Article  PubMed  CAS  Google Scholar 

  16. Beldi G, Wu Y, Banz Y et al (2008) Natural killer T cell dysfunction in CD39-null mice protects against concanavalin A-induced hepatitis. Hepatology 48:841–852

    Article  PubMed  CAS  Google Scholar 

  17. Dranoff JA, Kruglov EA, Robson SC et al (2002) The ecto-nucleoside triphosphate diphosphohydrolase NTPDase2/CD39L1 is expressed in a novel functional compartment within the liver. Hepatology 36:1135–1144

    Article  PubMed  CAS  Google Scholar 

  18. Beldi G, Wu Y, Sun X et al (2008) Regulated catalysis of extracellular nucleotides by vascular CD39/ENTPD1 is required for liver regeneration. Gastroenterology 135(5):1751–1760

    Article  PubMed  CAS  Google Scholar 

  19. Imai M, Takigami K, Guckelberger O et al (1999) Modulation of nucleoside [correction of nucleotide] triphosphate diphosphohydrolase-1 (NTPDase-1)cd39 in xenograft rejection. Mol Med 5:743–752

    PubMed  CAS  Google Scholar 

  20. Yadav SS, Gao W, Harland RC, Clavien PA (1998) A new and simple technique of total hepatic ischemia in the mouse. Transplantation 65:1433–1436

    Article  PubMed  CAS  Google Scholar 

  21. Dufour DR, Lott JA, Nolte FS et al (2000) Diagnosis and monitoring of hepatic injury. II. Recommendations for use of laboratory tests in screening, diagnosis, and monitoring. Clin Chem 46:2050–2068

    PubMed  CAS  Google Scholar 

  22. Hallahan DE, Staba-Hogan MJ, Virudachalam S, Kolchinsky A (1998) X-ray-induced P-selectin localization to the lumen of tumor blood vessels. Cancer Res 58:5216–5220

    PubMed  CAS  Google Scholar 

  23. Colpaert CG, Vermeulen PB, Benoy I et al (2003) Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression. Br J Cancer 88:718–725

    Article  PubMed  CAS  Google Scholar 

  24. Grenz A, Zhang H, Hermes M et al (2007) Contribution of E-NTPDase1 (CD39) to renal protection from ischemia-reperfusion injury. FASEB J 21:2863–2873

    Article  PubMed  CAS  Google Scholar 

  25. Kohler D, Eckle T, Faigle M et al (2007) CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury. Circulation 116:1784–1794

    Article  PubMed  Google Scholar 

  26. Pinsky DJ, Yan SF, Lawson C et al (1995) Hypoxia and modification of the endothelium: implications for regulation of vascular homeostatic properties. Semin Cell Biol 6:283–294

    Article  PubMed  CAS  Google Scholar 

  27. Dwyer KM, Robson SC, Nandurkar HH et al (2004) Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation. J Clin Invest 113:1440–1446

    Google Scholar 

  28. Guckelberger O, Sun XF, Sevigny J et al (2004) Beneficial effects of CD39/ecto-nucleoside triphosphate diphosphohydrolase-1 in murine intestinal ischemia-reperfusion injury. Thromb Haemost 91:576–586

    PubMed  CAS  Google Scholar 

  29. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184

    Article  PubMed  CAS  Google Scholar 

  30. Dwyer KM, Deaglio S, Gao W et al (2007) CD39 and control of cellular immune responses. Purinergic Signal 3:171–180

    Article  PubMed  CAS  Google Scholar 

  31. Hyman MC, Petrovic-Djergovic D, Visovatti SH et al (2009) Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39. J Clin Invest 119:1136–1149

    Article  PubMed  CAS  Google Scholar 

  32. Pinsky DJ, Broekman MJ, Peschon JJ et al (2002) Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain. J Clin Invest 109:1031–1040

    PubMed  CAS  Google Scholar 

  33. Day YJ, Marshall MA, Huang L et al (2004) Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: inhibition of chemokine induction. Am J Physiol Gastrointest Liver Physiol 286:G285–G293

    Article  PubMed  CAS  Google Scholar 

  34. Day YJ, Li Y, Rieger JM et al (2005) A2A adenosine receptors on bone marrow-derived cells protect liver from ischemia-reperfusion injury. J Immunol 174:5040–5046

    PubMed  CAS  Google Scholar 

  35. Lappas CM, Day YJ, Marshall MA et al (2006) Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med 203:2639–2648

    Article  PubMed  CAS  Google Scholar 

  36. Linden J (2001) Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41:775–787

    Article  PubMed  CAS  Google Scholar 

  37. Yu L, Huang Z, Mariani J et al (2004) Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury. Nat Med 10:1081–1087

    Article  PubMed  CAS  Google Scholar 

  38. Sitkovsky MV, Lukashev D, Apasov S et al (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682

    Article  PubMed  CAS  Google Scholar 

  39. Friedman DJ, Rennke HG, Csizmadia E et al (2007) The vascular ectonucleotidase ENTPD1 is a novel renoprotective factor in diabetic nephropathy. Diabetes 56:2371–2379

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grant for this study: NIH P01 HL076540, NIH T32 GM007592-32

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Christopher Robson.

Additional information

**aofeng Sun, Masato Imai, and Martina Nowak-Machen equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Imai, M., Nowak-Machen, M. et al. Liver damage and systemic inflammatory responses are exacerbated by the genetic deletion of CD39 in total hepatic ischemia. Purinergic Signalling 7, 427–434 (2011). https://doi.org/10.1007/s11302-011-9239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9239-6

Keywords

Navigation