Log in

Identification and characterization of differential gene expression in the mesocarp and kernel of oil palm nuts using suppression subtractive hybridization

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Suppression subtracted hybridization (SSH) and dot blotting were used to identify differential gene expression in the mesocarp and kernel of oil palm nuts. The different types of nut tissue show differences in fatty acid anabolism and the synthesis of other important compounds. In total, 302 clones from forward SSH libraries and 238 clones from reverse SSH libraries were identified following differential screening, respectively. Among these, 120 clones from the forward SSH library and 81 clones from the reverse SSH library, showed tenfold or more differential expression levels, and were sequenced. Sequence analysis revealed that 76 clones (28 from the forward SSH library and 48 from the reverse SSH library) represent non-redundant cDNA inserts. The differential expression of 39 subset genes in the two different tissues was further confirmed by RT-PCR analysis. Functionally annotated blasting against the GenBank non-redundant protein database classified all 76 candidate genes into six categories, according to their putative functions. Interestingly, our results show that a group of significantly differentially expressed genes are involved in processes associated with oil palm nut maturation, such as the synthesis of medium-chain saturated fatty acids and phytic acid, nut development, and stress/defense responses. This study describes some relationships between gene expression and metabolic pathways in mature oil palm nuts, and contributes to our understanding of oil palm nut ESTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BBIs:

Bowman–Birk serine proteinase inhibitors

EST:

Expressed sequence tag

KAS:

β-ketoacyl-ACP synthases

MADS:

MCM1-AGAMOUS-DEFICIENS-SRF

MIPs:

Myo-inositol 1-phosphate synthase

RT-PCR:

Real-time polymerase chain reaction

SSH:

Suppression subtracted hybridization

References

  • Abbadi A, Brummel M, Spener F (2000) Knockout of the regulatory site of 3-ketoacyl-ACP synthase III enhances short- and medium-chain acyl-ACP synthesis. Plant J 24:1–9

    Article  PubMed  CAS  Google Scholar 

  • Aberlenc-Bertossi F, Chabrillange N, Duval Y, Tregear J (2008) Contrasting globulin and cysteine proteinase gene expression patterns reveal fundamental developmental differences between zygotic and somatic embryos of oil palm. Tree Physiol 28:1157–1167

    PubMed  CAS  Google Scholar 

  • Abid G, Silue S, Muhovski Y, Jacquemin JM, Toussaint A, Baudoin JP (2009) Role of myo-inositol phosphate synthase and sucrose synthase genes in plant seed development. Gene 439:1–10

    Article  PubMed  CAS  Google Scholar 

  • Abreu EF, Aragão FJ (2007) Isolation and characterization of a myo-inositol-1-phosphate synthase gene from yellow passion fruit (Passiflora edulis f. flavicarpa) expressed during seed development and environmental stress. Ann Bot 99:285–292

    Article  PubMed  CAS  Google Scholar 

  • Abu-Abied M, Holland D (1994) The gene c-ino1 from Citrus paradisi is highly homologous to tur1 and ino1 from yeast and Spirodela encoding for myo-inositol phosphate synthase. Plant Physiol 106:1689

    Article  PubMed  CAS  Google Scholar 

  • Adam H, Jouannic S, Morcillo F, Richaud F, Duval Y, Tregear JW (2006) MADS box genes in oil palm (Elaeis guineensis): patterns in the evolution of the SQUAMOSA, DEFICIENS, GLOBOSA, AGAMOUS, and SEPALLATA subfamilies. J Mol Evol 62:15–31

    Article  PubMed  CAS  Google Scholar 

  • Adam H, Jouannic S, Orieux Y, Morcillo F, Richaud F, Duval Y, Tregear JW (2007) Functional characterization of MADS box genes involved in the determination of oil palm flower structure. J Exp Bot 58:1245–1259

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Mendoza MS, To A, Harscoët E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON 2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838

    Article  PubMed  CAS  Google Scholar 

  • Billotte N, Marseillac N, Risterucci AM, Adon B, Brottier P, Baurens FC, Singh R, Herrán A, Asmady H, Billot C, Amblard P, Durand-Gasselin T, Courtois B, Asmono D, Cheah SC, Rohde W, Ritter E, Charrier A (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 110:754–765

    Article  PubMed  CAS  Google Scholar 

  • Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15:1020–1033

    Article  PubMed  CAS  Google Scholar 

  • Cater NB, Heller HJ, Denke MA (1997) Comparison of the effects of medium-chain triacylglycerols, palm oil, and high oleic acid sunflower oil on plasma triacylglycerol fatty acids and lipid and lipoprotein concentrations in humans. Am J Clin Nutr 65:41–45

    PubMed  CAS  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  PubMed  CAS  Google Scholar 

  • Chai G, Bai Z, Wei F, King GJ, Wang C, Shi L, Dong C, Chen H, Liu S (2010) Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers. Theor Appl Genet 120:1597–1610

    Article  PubMed  CAS  Google Scholar 

  • Clementea A, Domoney C (2006) Biological significance of polymorphism in legume protease inhibitors from the Bowman-Birk family. Curr Protein Pept Sci 7:201–216

    Article  PubMed  Google Scholar 

  • Dehesh K, Tai H, Edwards P, Byrne J, Jaworski JG (2001) Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol 125:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Møller BL, Preuss D (2009) CYP704B1 is a long-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151:574–589

    Article  PubMed  CAS  Google Scholar 

  • Dörmann P, Voelker TA, Ohlrogge JB (2000) Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1. Plant Physiol 123:637–644

    Article  PubMed  Google Scholar 

  • Eccleston VS, Ohlrogge JB (1998) Expression of lauroyl-acyl carrier protein thioesterase in brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. Plant Cell 10:613–622

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yagi M, Koizumi N, Kusano T, Sano H (2000) Screening of wound-responsive genes identifies an immediate-early expressed gene encoding a highly charged protein in mechanically wounded tobacco plants. Plant Cell Physiol 41:684–691

    Article  PubMed  CAS  Google Scholar 

  • Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta 1301:7–56

    PubMed  Google Scholar 

  • Ho CL, Kwan YY, Choi MC, Tee SS, Ng WH, Lim KA, Lee YP, Ooi SE, Lee WW, Tee JM, Tan SH, Kulaveerasingam H, Alwee SS, Abdullah MO (2007) Analysis and functional annotation of expressed sequence tags (ESTs) from multiple tissues of oil palm (Elaeis guineensis Jacq.). BMC Genomics 22:381

    Article  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG, Bohnert HJ (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537–548

    Article  PubMed  CAS  Google Scholar 

  • Johnson MD (1994) The Arabidopsis thaliana myo-inositol 1-phosphate synthase (EC 5.5.1.4). Plant Physiol 105:1023–1024

    Article  PubMed  CAS  Google Scholar 

  • Jouannic S, Argout X, Lechauve F, Fizames C, Borgel A, Morcillo F, Aberlenc-Bertossi F, Duval Y, Tregear J (2005) Analysis of expressed sequence tags from oil palm (Elaeis guineensis). FEBS Lett 579:2709–2714

    Article  PubMed  CAS  Google Scholar 

  • Kaur H, Shukla RK, Yadav G, Chattopadhyay D, Majee M (2008) Two divergent genes encoding L-myo-inositol 1-phosphate synthase1 (CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea. Plant Cell Environ 31:1701–1716

    Article  PubMed  CAS  Google Scholar 

  • Larson TR, Edgell T, Byrne J, Dehesh K, Graham IA (2003) Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in develo** oilseeds. Plant J 32:519–527

    Article  Google Scholar 

  • Li DD, Fan YM (2007) Extraction and quality analysis of total RNA from pulp of coconut (Cocos nucifera L.). Mol Plant Breed 5(6):883–886, in Chinese

    CAS  Google Scholar 

  • Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D (2010) Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190

    Article  PubMed  CAS  Google Scholar 

  • Lin HC, Morcillo F, Dussert S, Tranchant-Dubreuil C, Tregear JW, Tranbarger TJ (2009) Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development. Plant Mol Biol 70:173–192

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H (2010) Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem 48:9–15

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Low ET, Alias H, Boon SH, Shariff EM, Tan CY, Ooi LC, Cheah SC, Raha AR, Wan KL, Singh R (2008) Oil palm (Elaeis guineensis Jacq.) tissue culture ESTs: identifying genes associated with callogenesis and embryogenesis. BMC Plant Biol 29:62

    Article  Google Scholar 

  • Maisonneuve S, Bessoule JJ, Lessire R, Delseny M, Roscoe TJ (2010) Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol 152:670–684

    Article  PubMed  CAS  Google Scholar 

  • Marone M, Mozzetti S, De Ritis D, Pierelli L, Scambia G (2001) Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online 16:19–25

    Article  Google Scholar 

  • Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19:1473–1487

    Article  PubMed  CAS  Google Scholar 

  • Morcillo F, Gallard A, Pillot M, Jouannic S, Aberlenc-Bertossi F, Collin M, Verdeil JL, Tregear JW (2007) EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta 226:1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Nath UK, Wilmer JA, Wallington EJ, Becker HC, Möllers C (2009) Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theor Appl Genet 118:765–773

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844

    Article  PubMed  CAS  Google Scholar 

  • Omidvar V, Siti Nor Akmar A, Marziah M, Maheran AA (2008) A transient assay to evaluate the expression of polyhydroxybutyrate genes regulated by oil palm mesocarp-specific promoter. Plant Cell Rep 27:1451–1459

    Article  PubMed  CAS  Google Scholar 

  • Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Pidkowich MS, Nguyen HT, Heilmann I, Ischebeck T, Shanklin J (2007) Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proc Natl Acad Sci USA 104:4742–4747

    Article  PubMed  CAS  Google Scholar 

  • Qu LJ, Chen J, Liu M, Pan N, Okamoto H, Lin Z, Li C, Li D, Wang J, Zhu G, Zhao X, Chen X, Gu H, Chen Z (2003) Molecular cloning and functional analysis of a novel type of Bowman-Birk inhibitor gene family in rice. Plant Physiol 133:560–570

    Article  PubMed  CAS  Google Scholar 

  • Rival A, Jaligot E, Beulé T, Finnegan EJ (2008) Isolation and expression analysis of genes encoding MET, CMT, and DRM methyltransferases in oil palm (Elaeis guineensis Jacq.) in relation to the ‘mantled’ somaclonal variation. J Exp Bot 59:3271–3281

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Tan SG, Panandam JM, Rahman RA, Ooi LC, Low ET, Sharma M, Jansen J, Cheah SC (2009) Map** quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm. BMC Plant Biol 26:114

    Article  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  PubMed  CAS  Google Scholar 

  • Taylor DC, Francis T, Guo Y, Brost JM, Katavic V, Mietkiewska E, Michael Giblin E, Lozinsky S, Hoffman T (2009) Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Plant Biotechnol J 7:925–938

    Article  PubMed  CAS  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  PubMed  CAS  Google Scholar 

  • Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    Article  PubMed  CAS  Google Scholar 

  • Xu BY, Su W, Liu JH, Wang JB, ** ZQ (2007) Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Planta 226:529–539

    Article  PubMed  CAS  Google Scholar 

  • Ye XY, Ng TB, Tsang PW, Wang J (2001) Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds. J Protein Chem 20:367–375

    Article  PubMed  CAS  Google Scholar 

  • Yusof B (2007) Palm oil production through sustainable plantations. Eur J Lipid Sci Tech 109:289–295

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (NSFC) (No: 30560092 and 31060259) and National Nonprofit Institute Research Grant of CATAS-ITBB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zhou or Dongdong Li.

Additional information

Communicated by J. Dean

Li Xu and Yijun Yuan contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Yuan, Y., Zhang, L. et al. Identification and characterization of differential gene expression in the mesocarp and kernel of oil palm nuts using suppression subtractive hybridization. Tree Genetics & Genomes 7, 999–1010 (2011). https://doi.org/10.1007/s11295-011-0390-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0390-6

Keywords

Navigation