Log in

Algae as a green technology for heavy metals removal from various wastewater

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Urbanization, industrialization, and natural earth processes have potentially increased the contamination of heavy metals (HMs) in water bodies. These HMs can accumulate in human beings through the consumption of contaminated water and food chains. Various clean-up technologies have been applied to sequester HMs, especially conventional methods including electrolytic technologies, ion exchange, precipitation, chemical extraction, hydrolysis, polymer micro-encapsulation, and leaching. However, most of these approaches are expensive for large-scale projects and require tedious control and constant monitoring, along with low efficiency for effective HMs removal. Algae offer an alternative, sustainable, and environmentally friendly HMs remediation approach. This review presents a state-of-the-art technology for potential use of algae as a low-cost biosorbent for the removal of HMs from wastewater. The mechanisms of HMs removal, including biosorption and bioaccumulation along with physical and chemical characterization of the algae are highlighted. The influence of abiotic factors on HMs removal and changes in algal biocomponents (including, carbohydrate, lipid, and protein) are discussed. Recent progresses made in the development of HMs-tolerant algal strains and the direction of future research toward the development of sustainable technology for advanced wastewater treatment and biomass production are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abedi S et al (2019) Decoupling a novel Trichormus variabilis-Synechocystis sp. interaction to boost phycoremediation. Sci Rep 9:1–10

    CAS  Google Scholar 

  • Abou-Shanab RAI, Hwang J-H, Cho Y, Min B, Jeon B-H (2011) Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl Energy 88:3300–3306

    CAS  Google Scholar 

  • Abou-Shanab RA, Ji MK, Kim HC, Paeng KJ, Jeon BH (2013) Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manage 115:257–264

    CAS  PubMed  Google Scholar 

  • Afkar E, Ababna H, Fathi A (2010) Toxicological response of the green alga Chlorella vulgaris, to some heavy metals. Am J Environ Sci 6:230–237

    CAS  Google Scholar 

  • Ahmad P (2016) Plant metal interaction: emerging remediation techniques. Elsevier, Amsterdam

    Google Scholar 

  • Ajayan KV, Selvaraju M, Thirugnanamoorthy K (2011) Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents. Pak J Biol Sci 14:805–811

    CAS  PubMed  Google Scholar 

  • Aksu Z (2001) Equilibrium and kinetic modelling of cadmium (II) biosorption C. vulgaris by in a batch system: effect of temperature. Sep Purif Technol 21:285–294

    CAS  Google Scholar 

  • Alfarra RS, Ali NE, Yusoff MM (2014) Removal of heavy metals by natural adsorbent: review. Int J Biosci 4:130–139

    CAS  Google Scholar 

  • Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayed NMS (2014) Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass Arab J Chem 7:57–62

    CAS  Google Scholar 

  • Al-Homaidan AA, Alabdullatif JA, Al-Hazzani AA, Al-Ghanayem AA, Alabbad AF (2015) Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi J Biol Sci 22:795–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alqadami AA, Khan MA, Otero M, Siddiqui MR, Jeon B-H, Batoo KM (2018) A magnetic nanocomposite produced from camel bones for an efficient adsorption of toxic metals from water. J Clean Prod 178:293–304

    Google Scholar 

  • Amit, Chandra R, Ghosh UK, Nayak JK (2017) Phycoremediation potential of marine microalga Tetraselmis indica on secondary treated domestic sewage for nutrient removal and biodiesel production. Environ Sci Pollut Res Int 24:20868–20875

    CAS  PubMed  Google Scholar 

  • Anantharaj K, Govindasamy C, Natanamurugaraj G, Jeyachandran S (2011) Effect of heavy metals on marine diatom Amphora coffeaeformis (Agardh. Kutz). Glob J Environ Res 5:112–117

    CAS  Google Scholar 

  • Anastopoulos I, Kyzas GZ (2015) Progress in batch biosorption of heavy metals onto algae. J Mol Liq 209:77–86

    CAS  Google Scholar 

  • Andrade A, Rollemberg M, Nobrega J (2005) Proton and metal binding capacity of the green freshwater alga Chaetophora elegans. Process Biochem 40:1931–1936

    CAS  Google Scholar 

  • Ansari FA, Ravindran B, Gupta SK, Nasr M, Rawat I, Bux F (2019) Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. J Environ Manage 240:293–302

    CAS  PubMed  Google Scholar 

  • Apandi NM, Mohamed R, Al-Gheethi A, Kassim AHM (2019) Microalgal biomass production through phycoremediation of fresh market wastewater and potential applications as aquaculture feeds. Environ Sci Pollut Res Int 26:3226–3242

    CAS  PubMed  Google Scholar 

  • Asgher M, Per TS, Masood A, Fatma M, Freschi L, Corpas FJ, Khan NA (2016) Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ Sci Pollut Res 24:1–13

    Google Scholar 

  • Aude-Garcia C et al (2016) Different in vitro exposure regimens of murine primary macrophages to silver nanoparticles induce different fates of nanoparticles and different toxicological and functional consequences. Nanotoxicology 10:586–596

    CAS  PubMed  Google Scholar 

  • Aziz N, Jayasuriya N, Fan L (2016) Adsorption study on Moringa oleifera seeds and Musa cavendish as natural water purification agents for removal of lead, nickel and cadmium from drinking water. In: IOP Conference Series: Mater Sci Eng . vol 1. IOP Publishing, p 012044

  • Babarinde A, Onyiaocha GO (2016) Equilibrium sorption of divalent metal ions onto groundnut (Arachis hypogaea) shell: kinetics, isotherm and thermodynamics. Chem Int 2:37–46

    CAS  Google Scholar 

  • Babu AG, Kim J-D, Oh B-T (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    PubMed  Google Scholar 

  • Bakatula E, Cukrowska E, Weiersbye I, Mihaly-Cozmuta L, Peter A, Tutu H (2014) Biosorption of trace elements from aqueous systems in gold mining sites by the filamentous green algae (Oedogonium sp.). J Geochem Explorat 144:492–503

    CAS  Google Scholar 

  • Balarak D, Azarpira H, Mostafapour FK (2016) Thermodynamics of removal of cadmium by adsorption on Barley husk biomass. Der Pharma Chemica 8:243–247

    CAS  Google Scholar 

  • Bayes GS, Raut SS, Patil VR, Lokhande RS (2012) Formation of diazepam-lanthanides (III) complexes in the 50–50 volume% ethanol-water solvent system and study of the effect of temperature on the complex formation constants. J Solut Chem 41:241–248

    CAS  Google Scholar 

  • Birungi Z, Chirwa E (2014) The kinetics of uptake and recovery of lanthanum using freshwater algae as biosorbents: comparative analysis. Bioresour Technol 160:43–51

    CAS  PubMed  Google Scholar 

  • Brinza L, Dring MJ, Gavrilescu MJEE, Journal M (2007) Marine micro and macro algal species as biosorbents for heavy metals. Environ Eng Manag J 6:237–251

    CAS  Google Scholar 

  • Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386

    PubMed  PubMed Central  Google Scholar 

  • Bulgariu D, Bulgariu L (2016) Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium (II) from aqueous media: batch and column studies. J Clean Prod 112:4525–4533

    CAS  Google Scholar 

  • Cechinel MA et al (2016) Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. Chem Eng J 286:1–15

    CAS  Google Scholar 

  • Chairat M, Bremner JB (2016) Biosorption of lac dye by the red marine alga Gracilaria tenuistipitata: biosorption kinetics, isotherms, and thermodynamic parameters. Color Technol 132:472–480

    CAS  Google Scholar 

  • Chang Y-C (2019) Microbial biodegradation of xenobiotic compounds. CRC Press, Boca Raton

    Google Scholar 

  • Chmielewská E, Medved J (2001) Bioaccumulation of heavy metals by green algae Cladophora glomerata in a refinery sewage lagoon. Croatica Chemica Acta 74:135–145

    Google Scholar 

  • Dao LH, Beardall J (2016) Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae. Chemosphere 147:420–429

    CAS  PubMed  Google Scholar 

  • Darda S, Papalas T, Zabaniotou A (2019) Biofuels journey in Europe: currently the way to low carbon economy sustainability is still a challenge. J Clean Prod 208:575–588

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    CAS  PubMed  Google Scholar 

  • de Namor AFD, El Gamouz A, Frangie S, Martinez V, Valiente L, Webb OA (2012) Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water. J Hazard Mater 241:14–31

    Google Scholar 

  • Dixit R et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    CAS  Google Scholar 

  • El Nemr A, El-Sikaily A, Khaled A, Abdelwahab O (2015) Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab J Chem 8:105–117

    CAS  Google Scholar 

  • Fawzy MA, Issa AA (2016) Bioremoval of heavy metals and nutrients from sewage plant by Anabaena oryzae and Cyanosarcina fontana. Int J Phytoremediat 18:321–328

    CAS  Google Scholar 

  • Furey PC, Deininger A, Liess A (2016) Substratum-associated microbiota. Water Environ Res 88:1637–1671

    CAS  PubMed  Google Scholar 

  • Furuhashi Y, Honda R, Noguchi M, Hara-Yamamura H, Kobayashi S, Higashimine K, Hasegawa HJBEJ (2019) Optimum conditions of pH, temperature and preculture for biosorption of europium by microalgae Acutodesmus acuminatus. Biochem Eng J 143:58–64

    CAS  Google Scholar 

  • Gao F, Li C, Yang Z-H, Zeng G-M, Mu J, Liu M, Cui W (2016) Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor. J Chem Technol Biotechnol 91:2713–2719

    CAS  Google Scholar 

  • Gharieb MM, Gadd GM (2004) Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae. Biometals 17:183–188

    CAS  PubMed  Google Scholar 

  • Godlewska-Zylkiewicz B (2001) Analytical applications of living organisms for preconcentration of trace metals and their speciation. Crit Rev Anal Chem 31:175–189

    CAS  Google Scholar 

  • Goher ME, Abdel-Satar A, Ali M, Hussian A, Napiorkowska-Krzebietke A (2016) Biosorption of some toxic metals from aqueous solution using non-living algal cells of Chlorella vulgaris. J Elementol 21:703–713

    Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J Colloid Interface Sci 342:533–539

    CAS  PubMed  Google Scholar 

  • Gupta A, Joia J, Sood A, Sood R, Sidhu C (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372

    CAS  Google Scholar 

  • Gupta SK, Sriwastav A, Ansari FA, Nasr M, Nema AK (2017) Phycoremediation: an eco-friendly algal technology for bioremediation and bioenergy production. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 431–456

    Google Scholar 

  • Hallmann A (2015) Algae biotechnology-green cell-factories on the rise. Curr Biotechnol 4:389–415

    CAS  Google Scholar 

  • He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol 160:67–78

    CAS  PubMed  Google Scholar 

  • Henriques B et al (2017) Bioaccumulation of Hg, Cd and Pb by Fucus vesiculosus in single and multi-metal contamination scenarios and its effect on growth rate. Chemosphere 171:208–222

    CAS  PubMed  Google Scholar 

  • Iddou A, Hadj Youcef M, Aziz A, Ouali MS (2011) Biosorptive removal of lead (II) ions from aqueous solutions using Cystoseira stricta biomass: study of the surface modification effect. J Saudi Chem Soc 15:83–88

    CAS  Google Scholar 

  • Issa AA, Fawzy MA, El-Deeb B (2016) Uptake of cadmium by the green alga Scenedesmus quadricauda in the presence of selenium nanoparticles. Int J Nano Chem 2:47–52

    Google Scholar 

  • Jais NM, Mohamed R, Al-Gheethi A, Hashim MA (2017) The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technol Environ Policy 19:37–52

    CAS  Google Scholar 

  • Jalali-Rad R, Ghafourian H, Asef Y, Dalir S, Sahafipour M, Gharanjik B (2004) Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications. J Hazard Mater 116:125–134

    CAS  PubMed  Google Scholar 

  • Jan S, Parray JA (2016) Approaches to heavy metal tolerance in plants. Springer, Singapore

    Google Scholar 

  • Jasrotia S, Kansal A, Kishore V (2014) Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchem J 114:197–202

    CAS  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation-life of science. InTech, Rijeka, pp 289–320

    Google Scholar 

  • Juang YJ, Chang JS (2016) Applications of microfluidics in microalgae biotechnology: a review. Biotechnol J 3:327–335

    Google Scholar 

  • Kanchana S, Jeyanthi J, Kathiravan R, Suganya K (2014) Biosorption of heavy metals using algae: a review. Int J Pharma Med Biol Sci 3:1

    CAS  Google Scholar 

  • Khan MA, Ngabura M, Choong TS, Masood H, Chuah LA (2012) Biosorption and desorption of nickel on oil cake: batch and column studies. Bioresour Technol 103:35–42

    CAS  PubMed  Google Scholar 

  • Khan S, Shamshad I, Waqas M, Nawab J, Ming L (2017) Remediating industrial wastewater containing potentially toxic elements with four freshwater algae. Ecol Eng 102:536–541

    Google Scholar 

  • Kleinübing SJ, Gai F, Bertagnolli C, da Silva MGC (2013) Extraction of alginate biopolymer present in marine alga Sargassum filipendula and bioadsorption of metallic ions. Mater Res 16:481–488

    Google Scholar 

  • Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal-organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107

    CAS  Google Scholar 

  • Kotrba P (2011) Microbial biosorption of metals—general introduction. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer, Dordrecht, pp 1–6

    Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    CAS  PubMed  Google Scholar 

  • Kumar KS, Dahms H-U, Won E-J, Lee J-S, Shin K-H (2015) Microalgae—a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Google Scholar 

  • Kumar D, Pandey LK, Gaur J (2016) Metal sorption by algal biomass: from batch to continuous system. Algal Res 18:95–109

    Google Scholar 

  • Kwaansa-Ansah EE, Nti SO, Opoku F (2019) Heavy metals concentration and human health risk assessment in seven commercial fish species from Asafo Market, Ghana. Food Sci Biotechnol 28:569–579

    CAS  PubMed  Google Scholar 

  • Lahiri S, Ghosh D, Bhakta JN (2017) Role of microbes in eco-remediation of perturbed aquatic ecosystem. In: Bhakta J (ed) Handbook of research on inventive bioremediation techniques. IGI Global, Hershey, pp 70–107

    Google Scholar 

  • Li M, Hu C, Zhu Q, Chen L, Kong Z, Liu Z (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    CAS  PubMed  Google Scholar 

  • Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    CAS  PubMed  Google Scholar 

  • Lou Z et al (2015) Brown algae based new sorption material for fractional recovery of molybdenum and rhenium from wastewater. Chem Eng J 273:231–239

    CAS  Google Scholar 

  • Luo F, Liu Y, Li X, Xuan Z, Ma J (2006) Biosorption of lead ion by chemically-modified biomass of marine brown algae Laminaria japonica. Chemosphere 64:1122–1127

    CAS  PubMed  Google Scholar 

  • Mahdavi H, Ulrich AC, Liu Y (2012) Metal removal from oil sands tailings pond water by indigenous micro-alga. Chemosphere 89:350–354

    CAS  PubMed  Google Scholar 

  • Mantzorou A, Navakoudis E, Paschalidis K, Ververidis F (2018) Microalgae: a potential tool for remediating aquatic environments from toxic metals. Int J Environ Sci Technol 16:1815–1830

    Google Scholar 

  • Masood A, Khan MIR, Fatma M, Asgher M, Per TS, Khan NA (2016) Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard. Plant Physiol Biochem 104:1–10

    CAS  PubMed  Google Scholar 

  • Matamoros V, Gutierrez R, Ferrer I, Garcia J, Bayona JM (2015) Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater 288:34–42

    CAS  PubMed  Google Scholar 

  • Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16:23929–23969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moroney J, Bartlett S, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–153

    CAS  Google Scholar 

  • Mrudula V, Vijaya T, Mouli KC, Jyothi UN, Aishwarya S, Reddy VD (2016) Novel method for removal of heavy metals by using low cost absorbents. Indo Am J Pharm Res 6:5472–5480

    CAS  Google Scholar 

  • Namdeti R, Pulipati K (2014) Lead removal from aqueous solution using Ficus hispida leaves powder. Desalin Water Treat 52:339–349

    CAS  Google Scholar 

  • Nowicka B, Pluciński B, Kuczyńska P, Kruk J (2016) Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicol Environ Saf 130:133–145

    CAS  PubMed  Google Scholar 

  • Oyetibo GO, Miyauchi K, Huang Y, Chien M-F, Ilori MO, Amund OO, Endo G (2016) Biotechnological remedies for the estuarine environment polluted with heavy metals and persistent organic pollutants. Int Biodeterior Biodegrad 119:614–625

    Google Scholar 

  • Park DM et al (2016) Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags. Environ Sci Technol 50:2735–2742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar M, Thakur LS (2013) Heavy metal Cu, Ni and Zn: toxicity, health hazards and their removal techniques by low cost adsorbents: a short overview. Int J Plant Anim Environ Sci 3:2231–4490

    Google Scholar 

  • Perales-Vela HV, Pena-Castro JM, Canizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10

    CAS  PubMed  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Żyłkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65

    CAS  PubMed  Google Scholar 

  • Pokethitiyook P, Poolpak T (2016) Biosorption of heavy metal from aqueous solutions. Phytoremediation. Springer, Cham, pp 113–141

    Google Scholar 

  • Poo K-M, Son E-B, Chang J-S, Ren X, Choi Y-J, Chae K-J (2018) Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J Environ Manag 206:364–372

    CAS  Google Scholar 

  • Priyadarshini E, Priyadarshini SS, Pradhan N (2019) Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl Microbiol Biotechnol 7:1–20

    Google Scholar 

  • Quan Q, Chen Y, Ma Q, Wang F, Meng X, Wang B (2016) The impact of atmospheric deposition of cadmium on dominant algal species in the East China Sea. J Ocean Univ China 15:271–282

    CAS  Google Scholar 

  • Raeesossadati M, Ahmadzadeh H, McHenry M, Moheimani N (2014) CO2 bioremediation by microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Res 6:78–85

    Google Scholar 

  • Raikova S et al (2016) Assessing hydrothermal liquefaction for the production of bio-oil and enhanced metal recovery from microalgae cultivated on acid mine drainage. Fuel Process Technol 142:219–227

    CAS  Google Scholar 

  • Rajamani S, Siripornadulsil S, Falcao V, Torres M, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. Adv Exp Med Biol 616:99–109

    PubMed  Google Scholar 

  • Rijstenbil JW, Gerringa LJA (2002) Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper. Aquat Toxicol 56:115–131

    CAS  PubMed  Google Scholar 

  • Rodrigo WD, Eder CS, de Roberta PM, Alexandra L, Marcelo M, Paulo AH, Zenilda LB (2012) Effects of cadmium on growth, photosynthetic pigments, photosynthetic performance, biochemical parameters and structure of chloroplasts in the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales). Am J Plant Sci 3:1077–1084

    Google Scholar 

  • Salama E-S, Kurade MB, Abou-Shanab RA, El-Dalatony MM, Yang I-S, Min B, Jeon B-H (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sustain Energy Rev 79:1189–1211

    CAS  Google Scholar 

  • Sargın İ, Arslan G, Kaya M (2016) Efficiency of chitosan-algal biomass composite microbeads at heavy metal removal. React Funct Polym 98:38–47

    Google Scholar 

  • Schiewer S (1999) Modelling complexation and electrostatic attraction in heavy metal biosorption by Sargassum biomass. J Appl Phycol 11:79–87

    CAS  Google Scholar 

  • Schiewer S, Wong M (2000) Ionic strength effects in biosorption of metals by marine algae. Chemosphere 41:271–282

    CAS  PubMed  Google Scholar 

  • Sheng PX, Tan LH, Chen JP, Ting YP (2005) Biosorption performance of two brown marine algae for removal of chromium and cadmium. J Dispers Sci Technol 25:679–686

    Google Scholar 

  • Singare P, Lokhande R, Pathak P (2010) Study on physico-chemical properties and heavy metal content of the soil samples from Thane Creek of Maharashtra, India. Interdisip Environ Rev 11:38–56

    Google Scholar 

  • Singh N, Raghubanshi A, Upadhyay A, Rai U (2016) Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India. Ecotoxicol Environ Saf 130:224–233

    CAS  PubMed  Google Scholar 

  • Singh N, Upadhyay A, Rai U (2017) Algal technologies for wastewater treatment and biofuels production: an integrated approach for environmental management. In: Gupta S, Malik A, Bux F (eds) Algal biofuels. Springer, Cham, pp 97–107

    Google Scholar 

  • Sooksawat N, Meetam M, Kruatrachue M, Pokethitiyook P, Inthorn D (2016) Equillibrium and kinetic studies on biosorption potential of charophyte biomass to remove heavy metals from synthetic metal solution and municipal wastewater. Bioremediat J 20:240–251

    CAS  Google Scholar 

  • Sunda W (2012) Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front Microbiol 3:204

    PubMed  PubMed Central  Google Scholar 

  • Sweetly J (2014) Macroalgae as a potentially low-cost biosorbent for heavy metal removal: a review. Int J Pharm Biol Arch 5:17–26

    Google Scholar 

  • Torres EM, Hess D, McNeil BT, Guy T, Quinn JC (2017) Impact of inorganic contaminants on microalgae productivity and bioremediation potential. Ecotoxicol Environ Saf 139:367–376

    CAS  PubMed  Google Scholar 

  • Tüzün I, Bayramoğlu G, Yalçın E, Başaran G, Celik G, Arıca MY (2005) Equilibrium and kinetic studies on biosorption of Hg(II), Cd (II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manage 77:85–92

    PubMed  Google Scholar 

  • Ungureanu G, Filote C, Santos SC, Boaventura RA, Volf I, Botelho CM (2016) Antimony oxyanions uptake by green marine macroalgae. J Environ Chem Eng 4:3441–3450

    CAS  Google Scholar 

  • Vilar VJ, Botelho CM, Boaventura RAJPB (2005) Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochem 40:3267–3275

    CAS  Google Scholar 

  • Vogel M, Günther A, Rossberg A, Li B, Bernhard G, Raff J (2010) Biosorption of U (VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ 409:384–395

    CAS  PubMed  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41:4017–4029

    CAS  PubMed  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    PubMed  Google Scholar 

  • Wang S, Vincent T, Faur C, Guibal E (2016a) Alginate and algal-based beads for the sorption of metal cations: Cu (II) and Pb(II). Int J Mol Sci 17:1453

    PubMed Central  Google Scholar 

  • Wang X-X, Wu Y-H, Zhang T-Y, Xu X-Q, Dao G-H, Hu H-Y (2016b) Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation. Water Res 94:215–224

    CAS  PubMed  Google Scholar 

  • Warmate A, Ideriah T, ARI IT, Inyang UU, Ibaraye T (2011) Concentrations of heavy metals in soil and water receiving used engine oil in Port Harcourt, Nigeria. J Ecol Nat Environ 3:54–57

    CAS  Google Scholar 

  • Wu Y-C, **ao Y, Wang Z-J, Zhao F (2016) Performance of bioelectrochemical systems inoculated with Desmodesmus sp. A8 under different light sources. Bioremed J 20:233–239

    CAS  Google Scholar 

  • Yang J, Cao J, **ng G, Yuan H (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 175:537–544

    CAS  PubMed  Google Scholar 

  • Yang I-S et al (2016) Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal. Energy Convers Manage 117:54–62

    CAS  Google Scholar 

  • Yi Q, Fan R, **e F, Zhang Q, Luo Z (2016) Recovery of palladium (II) from nitric acid medium using a natural resin prepared from persimmon dropped fruits residues. J Taiwan Inst Chem Eng 61:299–305

    CAS  Google Scholar 

  • Yu Q, Kaewsarn P (1999) Fixed-bed study for copper (II) removal from aqueous solutions by marine alga Durvillaea potatorum. Environ Technol 20:1005–1008

    CAS  Google Scholar 

  • Zabochnicka-Świątek M, Krzywonos M (2014) Potentials of biosorption and bioaccumulation processes for heavy metal removal. Mercury 6(1):145

    Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage 181:817–831

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhao X, Wan C, Chen B, Bai F (2016) Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Res 16:427–433

    Google Scholar 

  • Zhu M, Wachs IE (2016) Determining number of active sites and TOF for the high-temperature water gas shift reaction by iron oxide-based catalysts. ACS Catal 6:1764–1767

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (Grant No. 2017R1A2B2004143), and by a Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MSIP) (Grant No. KETEP-20163010092250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byong-Hun Jeon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salama, ES., Roh, HS., Dev, S. et al. Algae as a green technology for heavy metals removal from various wastewater. World J Microbiol Biotechnol 35, 75 (2019). https://doi.org/10.1007/s11274-019-2648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2648-3

Keywords

Navigation