Log in

Toxicity of Metals and Metallic Nanoparticles on Nutritional Properties of Microalgae

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microalgae has been utilized as food and supplement by humans for more than thousands of years due to their high nutritional properties such as proteins, vitamins, minerals, and other nutrients. However, the improvement in the modern society caused increased release of metals and metallic nanoparticles (MNPs) into the freshwater that might cause toxicity to the marine and freshwater microalgae. Although low concentration of these metals and MNPs will not affect the metabolism of microalgae, high concentration of metals and MNPs, on the other hand, can cause toxicity to microalgae. Studies have been done to evaluate the toxicity mechanism of metals and MNPs and the effect of these metals and MNPs on the nutritional value of microalgae. In this paper, the toxicity mechanism of metals and MNPs to microalgae is highlighted. The effect of the metals and MNPs on the growth rate and nutritional properties (pigments, biological macromolecules, and phenolic compounds) of microalgae are summarized as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abalde, J., Cid, A., Reiriz, S., Torres, E., & Herrero, C. (1995). Response of the marine microalga Dunaliella tertiolecta (Chlorophyceae) to copper toxicity in short time experiments. Bulletin of Environmental Contamination and Toxicology, 54, 317.

    CAS  Google Scholar 

  • Adam, V., Loyaux-Lawniczak, S., Labille, J., Galindo, C., del Nero, M., Gangloff, S., Weber, T., & Quaranta, G. (2016). Aggregation behaviour of TiO2 nanoparticles in natural river water. Journal of Nanoparticle Research, 18, 13.

    Google Scholar 

  • Aliakbarian, B., Dehghani, F., & Perego, P. (2009). The effect of citric acid on the phenolic contents of olive oil. Food Chemistry, 116, 617–623.

    CAS  Google Scholar 

  • Alloway, B. J., & Ayres, D. C. (1997). Chemical principles of environmental pollution (2nd ed.). London: Blackie.

    Google Scholar 

  • Andersen, R. A. (2005). Algal culturing techniques. Burlington: Elsevier/Academic Press.

    Google Scholar 

  • Anusha, L., Chingangbam, S. D., & Sibi, G. (2017). Inhibition effects of cobalt nano particles against fresh water algal blooms caused by Microcystis and Oscillatoria. Am. J. Appl. Sci. Res., 3, 26.

    Google Scholar 

  • Aravantinou, A. F., Tsarpali, V., Dailianis, S., & Manariotis, I. D. (2015). Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicology and Environmental Safety, 114, 109–116.

    CAS  Google Scholar 

  • Arunakumara, K. K. I. U., & Zhang, X. (2008). Heavy metal bioaccumulation and toxicity with special reference to microalgae. Journal of Ocean University of China, 7, 60–64.

    CAS  Google Scholar 

  • Aruoja, V., Dubourguier, H.-C., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ., 407, 1461–1468.

    CAS  Google Scholar 

  • Baścik-Remisiewicz, A., & Tukaj, Z. (2002). Toxicity of inorganic cadmium salts to the microalga Scenedesmus armatus (Chlorophyta) with respect to medium composition, pH and CO2 concentration. Acta Physiologiae Plantarum, 24, 59–65.

    Google Scholar 

  • Baveye, P., & Laba, M. (2008). Aggregation and toxicology of titanium dioxide nanoparticles. Environ. Health Perspect, 116, A152.

    Google Scholar 

  • Ben Hamissa, A. M., Seffen, M., Aliakbarian, B., Casazza, A. A., Perego, P., & Converti, A. (2012). Phenolics extraction from Agave americana (L.) leaves using high-temperature, high-pressure reactor. Food Bioprod Process, 90, 17–21.

    CAS  Google Scholar 

  • Bolouri-Moghaddam, M. R., Le Roy, K., **ang, L., Rolland, F., & Van den Ende, W. (2010). Sugar signalling and antioxidant network connections in plant cells: Sugar signalling and antioxidant networks in plants. The FEBS Journal, 277, 2022–2037.

    CAS  Google Scholar 

  • Bothe, H., Schmitz, O., Yates, M. G., & Newton, W. E. (2010). Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiology and Molecular Biology Reviews, 74, 529–551.

    CAS  Google Scholar 

  • Boussiba, S., & Richmond, A. E. (1980). C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Archives of Microbiology, 125, 143–147.

    CAS  Google Scholar 

  • Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A., & Stark, W. J. (2006). In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environmental Science & Technology, 40, 4374–4381.

    CAS  Google Scholar 

  • Capolino, E., Tredici, M., Pepi, M., & Baldi, F. (1997). Tolerance to mercury chloride in Scenedesmus strains. Biometals, 10, 85–94.

    CAS  Google Scholar 

  • Cardozo, K. H. M., Guaratini, T., Barros, M. P., Falcão, V. R., Tonon, A. P., Lopes, N. P., Campos, S., Torres, M. A., Souza, A. O., Colepicolo, P., & Pinto, E. (2007). Metabolites from algae with economical impact. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 146, 60–78.

    Google Scholar 

  • Casazza, A. A., Ferrari, P. F., Aliakbarian, B., Converti, A., & Perego, P. (2015). Effect of UV radiation or titanium dioxide on polyphenol and lipid contents of Arthrospira ( Spirulina ) platensis. Algal Research, 12, 308–315.

    Google Scholar 

  • Castro-Bugallo, A., González-Fernández, Á., Guisande, C., & Barreiro, A. (2014). Comparative responses to metal oxide nanoparticles in marine phytoplankton. Archives of Environmental Contamination and Toxicology, 67, 483–493.

    CAS  Google Scholar 

  • Chen, C.-Y., & Lin, K.-C. (1997). Optimization and performance evaluation of the continuous algal toxicity test. Environmental Toxicology and Chemistry, 16, 1337–1344.

    CAS  Google Scholar 

  • Comotto, M., Casazza, A. A., Aliakbarian, B., Caratto, V., Ferretti, M., & Perego, P. (2014). Influence of TiO2 nanoparticles on growth and phenolic compounds production in photosynthetic microorganisms. Scientific World Journal, 2014, 1–9.

    Google Scholar 

  • Devi, K. U., Swapna, G., & Suneetha, S. (2014). 19- microalgae in bioremediation: Sequestration of greenhouse gases, clearout of fugitive nutrient minerals, and subtraction of toxic elements from waters. In S. Das (Ed.), Microbial Biodegradation and Bioremediation (pp. 433–454). Amsterdam: Elsevier.

    Google Scholar 

  • Djearamane, S., Lim, Y. M., Wong, L. S., & Lee, P. F. (2019a). Cellular accumulation and cytotoxic effects of zinc oxide nanoparticles in microalga Haematococcus pluvialis. PeerJ, 7, e7582.

    Google Scholar 

  • Djearamane, S., Lim, Y. M., Wong, L. S., & Lee, P. F. (2018). Cytotoxic effects of zinc oxide nanoparticles on cyanobacterium Spirulina (Arthrospira) platensis. PeerJ, 6, e4682.

    Google Scholar 

  • Djearamane, S., Wong, L. S., Lim, Y. M., & Lee, P. F. (2019b). Cytotoxic effects of zinc oxide nanoparticles on Chlorella vulgaris. Pollution Research, 38, 479–484.

    CAS  Google Scholar 

  • Djearamane, S., Wong, L. S., Lim, Y. M., & Lee, P. F. (2019c). Short-term cytotoxicity of zinc oxide nanoparticles on Chlorella vulgaris. Sains Malays., 48, 69–73.

    Google Scholar 

  • D’ors, A., Pereira, M., Bartolomé, M. C., López-Rodas, V., Costas, E., & Sánchez-Fortún, S. (2010). Toxic effects and specific chromium acquired resistance in selected strains of Dyctiosphaerium chlorelloides. Chemosphere, 81, 282–287.

    Google Scholar 

  • El-Sheekh, M. M., El-Naggar, A. H., Osman, M. E. H., & El-Mazaly, E. (2003). Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidium minutum and Nitzchia perminuta. Brazilian Journal of Plant Physiology, 15, 159–166.

    CAS  Google Scholar 

  • Fazelian, N., Movafeghi, A., Yousefzadi, M., & Rahimzadeh, M. (2019). Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environmental Science and Pollution Research, 26, 17499–17511.

    CAS  Google Scholar 

  • Ferrari, S. G., Silva, P. G., González, D. M., Navoni, J. A., & Silva, H. J. (2013). Arsenic tolerance of cyanobacterial strains with potential use in biotechnology. Revista Argentina de Microbiología, 45, 174–179.

    CAS  Google Scholar 

  • Forest, V., Leclerc, L., Hochepied, J.-F., Trouvé, A., Sarry, G., & Pourchez, J. (2017). Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol. In Vitro, 38, 136–141.

    CAS  Google Scholar 

  • Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science & Technology, 41, 8484–8490.

    CAS  Google Scholar 

  • Franklin, N. M., Stauber, J. L., Apte, S. C., & Lim, R. P. (2002). Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Environmental Toxicology and Chemistry, 21, 742–751.

    CAS  Google Scholar 

  • Gong, N., Shao, K., Feng, W., Lin, Z., Liang, C., & Sun, Y. (2011). Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere, 83, 510–516.

    CAS  Google Scholar 

  • He, M., Yan, Y., Pei, F., Wu, M., Gebreluel, T., Zou, S., & Wang, C. (2017). Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Scientific Reports, 7, 15526.

    Google Scholar 

  • Huang, J., Cheng, J., & Yi, J. (2016). Impact of silver nanoparticles on marine diatom Skeletonema costatum: Silver nanoparticles are phototoxic to marine diatom. Journal of Applied Toxicology, 36, 1343–1354.

    CAS  Google Scholar 

  • Huang, W. J., Wu, C. C., & Chang, W. C. (2014). Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir. Environmental Monitoring and Assessment, 186, 805–814.

    CAS  Google Scholar 

  • Huang, Y. W., Cambre, M., & Lee, H. J. (2017). The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. International Journal of Molecular Sciences, 18, 2702.

    Google Scholar 

  • Huang, Y.-W., Lee, H.-J., Tolliver, L. M., & Aronstam, R. S. (2015). Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: Opportunities and challenges. BioMed Research International, 2015, 1–16.

    Google Scholar 

  • Hull, M. S., Kennedy, A. J., Steevens, J. A., Bednar, A. J., Weiss Jr., C. A., & Vikesland, P. J. (2009). Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environmental Science & Technology, 43, 4169–4174.

    CAS  Google Scholar 

  • Hund-Rinke, K., & Simon, M. (2006). Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science and Pollution Research International, 13, 225–232.

    CAS  Google Scholar 

  • Iswarya, V., Bhuvaneshwari, M., Alex, S. A., Iyer, S., Chaudhuri, G., Chandrasekaran, P. T., Bhalerao, G. M., Chakravarty, S., Raichur, A. M., Chandrasekaran, N., & Mukherjee, A. (2015). Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquatic Toxicology, 161, 154–169.

    CAS  Google Scholar 

  • Ivask, A., Juganson, K., Bondarenko, O., Mortimer, M., Aruoja, V., Kasemets, K., Blinova, I., Heinlaan, M., Slaveykova, V., & Kahru, A. (2014). Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review. Nanotoxicology, 8, 57–71.

    CAS  Google Scholar 

  • Jiang, J., Oberdörster, G., Elder, A., Gelein, R., Mercer, P., & Biswas, P. (2008). Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology, 2, 33–42.

    CAS  Google Scholar 

  • Kahru, A., Dubourguier, H.-C., Blinova, I., Ivask, A., & Kasemets, K. (2008). Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: A minireview. Sensors, 8, 5153–5170.

    CAS  Google Scholar 

  • Kai, W., **aojun, X., **ming, P., Zhenqing, H., & Qiqing, Z. (2011). Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells. Nanoscale Research Letters, 6, 480.

    Google Scholar 

  • Kang, N. K., Lee, B., Choi, G.-G., Moon, M., Park, M. S., Lim, J., & Yang, J.-W. (2014). Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean Journal of Chemical Engineering, 31, 861–867.

    CAS  Google Scholar 

  • Karlander, E. P., & Krauss, R. W. (1972). Absorption and toxicity of beryllium and lithium in Chlorella vannielii Shihira and Krauss. Chesapeake Science, 13, 245.

    Google Scholar 

  • Karlsson, H. L., Cronholm, P., Gustafsson, J., & Möller, L. (2008). Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21, 1726–1732.

    CAS  Google Scholar 

  • Kelly, K. A., Havrilla, C. M., Brady, T. C., Abramo, K. H., & Levin, E. D. (1998). Oxidative stress in toxicology: Established mammalian and emerging piscine model systems. Environmental Health Perspectives, 106, 375–384.

    CAS  Google Scholar 

  • Kondzior, P., & Butarewicz, A. (2018). Effect of heavy metals (Cu and Zn) on the content of photosynthetic pigments in the cells of algae Chlorella vulgaris. J. Ecol. Eng., 19, 18–28.

    Google Scholar 

  • Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D. T., & Show, P. L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness, 8, 16–24.

    Google Scholar 

  • Książyk, M., Asztemborska, M., Stęborowski, R., & Bystrzejewska-Piotrowska, G. (2015). Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata. Bulletin of Environmental Contamination and Toxicology, 94, 554–558.

    Google Scholar 

  • Lee, J. H., Ju, J. E., Kim, B. I., Pak, P. J., Choi, E. K., Lee, H. S., & Chung, N. (2014). Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells: Toxicity of rod and sphere iron oxide nanoparticles. Environmental Toxicology and Chemistry, 33, 2759–2766.

    CAS  Google Scholar 

  • Lee, W. M., & An, Y. J. (2013). Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: No evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere, 91, 536–544.

    CAS  Google Scholar 

  • Levy, J. L., Stauber, J. L., Adams, M. S., Maher, W. A., Kirby, J. K., & Jolley, D. F. (2005). Toxicity, biotransformation, and mode fo action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ. Toxicol. Chem, 24, 2630.

    CAS  Google Scholar 

  • Li, M., Hu, C., Zhu, Q., Chen, L., Kong, Z., & Liu, Z. (2006). Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere, 62, 565–572.

    CAS  Google Scholar 

  • Lohse, S. E., Abadeer, N. S., Zoloty, M., White, J. C., Newman, L. A., & Murphy, C. J. (2017). Nanomaterial probes in the environment: Gold nanoparticle soil retention and environmental stability as a function of surface chemistry. ACS Sustainable Chemistry & Engineering, 5, 11451–11458.

    CAS  Google Scholar 

  • Lone, J. A., Kumar, A., Kundu, S., Lone, F. A., & Suseela, M. R. (2013). Characterization of tolerance limit in Spirulina platensis in relation to nanoparticles. Water, Air, and Soil Pollution, 224, 1670.

    Google Scholar 

  • Manier, N., Bado-Nilles, A., Delalain, P., Aguerre-Chariol, O., & Pandard, P. (2013). Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environmental Pollution, 180, 63–70.

    CAS  Google Scholar 

  • Manzo, S., Miglietta, M. L., Rametta, G., Buono, S., & Di Francia, G. (2013). Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci. Total Environ., 445–446, 371–376.

    Google Scholar 

  • Melegari, S. P., Perreault, F., Costa, R. H. R., Popovic, R., & Matias, W. G. (2013). Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquatic Toxicology, 142–143, 431–440.

    Google Scholar 

  • Miazek, K., Iwanek, W., Remacle, C., Richel, A., & Goffin, D. (2015). Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: A review. International Journal of Molecular Sciences, 16, 23929–23969.

    CAS  Google Scholar 

  • Midander, K., Cronholm, P., Karlsson, H. L., Elihn, K., Möller, L., Leygraf, C., & Wallinder, I. O. (2009). Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: A cross-disciplinary study. Small, 5, 389–399.

    CAS  Google Scholar 

  • Miller, R. J., Lenihan, H. S., Muller, E. B., Tseng, N., Hanna, S. K., & Keller, A. A. (2010). Impacts of metal oxide nanoparticles on marine phytoplankton. Environmental Science & Technology, 44, 7329–7334.

    CAS  Google Scholar 

  • Mohamed, Z. A. (2008). Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology, 17, 504–516.

    CAS  Google Scholar 

  • Monteiro, C. M., Castro, P. M. L., & Malcata, F. X. (2012). Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnology Progress, 28, 299–311.

    CAS  Google Scholar 

  • Moroney, J. V., Bartlett, S. G., & Samuelsson, G. (2001). Carbonic anhydrases in plants and algae. Plant, Cell & Environment, 24, 141–153.

    CAS  Google Scholar 

  • Mota, R., Pereira, S. B., Meazzini, M., Fernandes, R., Santos, A., Evans, C. A., De Philippis, R., Wright, P. C., & Tamagnini, P. (2015). Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. J. Proteomics, 120, 75–94.

    CAS  Google Scholar 

  • Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A.-J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372–386.

    CAS  Google Scholar 

  • Neale, P. A., Jämting, Å. K., O’Malley, E., Herrmann, J., & Escher, B. I. (2015). Behaviour of titanium dioxide and zinc oxide nanoparticles in the presence of wastewater-derived organic matter and implications for algal toxicity. Environmental Science. Nano, 2, 86–93.

    CAS  Google Scholar 

  • Nel, A. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.

    CAS  Google Scholar 

  • Nishikawa, K., & Tominaga, N. (2001). Isolation, growth, ultrastructure, and metal tolerance of the green alga, Chlamydomonas acidophila (Chlorophyta). Bioscience, Biotechnology, and Biochemistry, 65, 2650–2656.

    CAS  Google Scholar 

  • Pádrová, K., Lukavský, J., Nedbalová, L., Čejková, A., Cajthaml, T., Sigler, K., Vítová, M., & Řezanka, T. (2015). Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. Journal of Applied Phycology, 27, 1443–1451.

    Google Scholar 

  • Palmieri, D., Aliakbarian, B., Casazza, A. A., Ferrari, N., Spinella, G., Pane, B., Cafueri, G., Perego, P., & Palombo, D. (2012). Effects of polyphenol extract from olive pomace on anoxia-induced endothelial dysfunction. Microvascular Research, 83, 281–289.

    CAS  Google Scholar 

  • Pham, T. L. (2019). Effect of silver nanoparticles on tropical freshwater and marine microalgae. Journal of Chemistry, 2019, 1–7.

    Google Scholar 

  • Pinto, E., Sigaud-kutner, T. C. S., Leitao, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39, 1008–1018.

    CAS  Google Scholar 

  • Polonini, H. C., Brandão, H. M., Raposo, N. R. B., Brandão, M. A. F., Mouton, L., Couté, A., Yéprémian, C., Sivry, Y., & Brayner, R. (2015). Size-dependent ecotoxicity of barium titanate particles: The case of Chlorella vulgaris green algae. Ecotoxicology, 24, 938–948.

    CAS  Google Scholar 

  • Pulskamp, K., Diabate, S., & Krug, H. (2007). Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicology Letters, 168, 58–74.

    CAS  Google Scholar 

  • Puspitasari, R., Suratno, P. T., & Agustin, A. T. (2018). Cu toxicity on growth and chlorophyll-a of Chaetoceros sp. IOP Conf. Ser. Earth Environ. Sci., 118, 012061.

    Google Scholar 

  • Rahman, M. A., Hogan, B., Duncan, E., Doyle, C., Krassoi, R., Rahman, M. M., Naidu, R., Lim, R. P., Maher, W., & Hassler, C. (2014). Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicology and Environmental Safety, 106, 126–135.

    CAS  Google Scholar 

  • Richmond, A. (2004). Handbook of microalgal culture: Biotechnology and applied phycology. Ames: Blackwell Science.

    Google Scholar 

  • Rizwan, M., Mujtaba, G., & Lee, K. (2017). Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. Biotechnology and Bioprocess Engineering, 22, 68–75.

    CAS  Google Scholar 

  • Rogers, N. J., Franklin, N. M., Apte, S. C., Batley, G. E., Angel, B. M., Lead, J. R., & Baalousha, M. (2010). Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environment and Chemistry, 7, 50.

    CAS  Google Scholar 

  • Saçan, M. T., Oztay, F., & Bolkent, S. (2007). Exposure of Dunaliella tertiolecta to lead and aluminum: Toxicity and effects on ultrastructure. Biological Trace Element Research, 120, 264–272.

    Google Scholar 

  • Sadiq, I. M., Pakrashi, S., Chandrasekaran, N., & Mukherjee, A. (2011). Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanoparticle Res, 13, 3287–3299.

    CAS  Google Scholar 

  • Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi J. Biol. Sci., 26, 709–722.

    CAS  Google Scholar 

  • Sendra, M., Yeste, M. P., Gatica, J. M., Moreno-Garrido, I., & Blasco, J. (2017). Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere, 179, 279–289.

    CAS  Google Scholar 

  • Shirazi, A., Shariati, F., Keshavarz, A. K., & Ramezanpour, Z. (2015). Toxic effect of aluminum oxide nanoparticles on green micro-algae. Int J Env. Res, 9, 585–594.

    Google Scholar 

  • Sibi, G., Ananda Kumar, D., Gopal, T., Harinath, K., Banupriya, S., & Chaitra, S. (2017). Metal nanoparticle triggered growth and lipid production in Chlorella vulgaris. Int. J. Sci. Res. Environ. Sci. Toxicol., 2, 1–8.

    Google Scholar 

  • Studer, A. M., Limbach, L. K., Van Duc, L., Krumeich, F., Athanassiou, E. K., Gerber, L. C., Moch, H., & Stark, W. J. (2010). Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicology Letters, 197, 169–174.

    CAS  Google Scholar 

  • Suman, T. Y., Radhika Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23–30.

    CAS  Google Scholar 

  • Sunda, W. G. (2012). Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Frontiers in Microbiology, 3.

  • Tang, Y., Li, S., Qiao, J., Wang, H., & Li, L. (2013). Synergistic effects of nano-sized titanium dioxide and zinc on the photosynthetic capacity and survival of Anabaena sp. International Journal of Molecular Sciences, 14, 14395–14407.

    Google Scholar 

  • Tang, Y., **n, H., Yang, S., Guo, M., Malkoske, T., Yin, D., & **a, S. (2018). Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: Toxic effects and environmental feedback. Aquatic Toxicology, 204, 19–26.

    CAS  Google Scholar 

  • Trenfield, M. A., van Dam, J. W., Harford, A. J., Parry, D., Streten, C., Gibb, K., & van Dam, R. A. (2015). Aluminium, gallium, and molybdenum toxicity to the tropical marine microalga Isochrysis galbana: Metal toxicity to the tropical marine alga I. galbana. Environmental Toxicology and Chemistry, 34, 1833–1840.

    CAS  Google Scholar 

  • Vega, J. M., Herrera, J., Aparicio, P. J., Paneque, A., & Losada, M. (1971). Role of molybdenum in nitrate reduction by Chlorella. Plant Physiology, 48, 294–299.

    CAS  Google Scholar 

  • Wu, J., Sun, J., & Xue, Y. (2010). Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicology Letters, 199, 269–276.

    CAS  Google Scholar 

  • **a, B., Chen, B., Sun, X., Qu, K., Ma, F., & Du, M. (2015). Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium : Growth inhibition, oxidative stress and internalization. Sci. Total Environ., 508, 525–533.

    CAS  Google Scholar 

  • **a, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J. I., Wiesner, M. R., & Nel, A. E. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 6, 1794–1807.

    CAS  Google Scholar 

  • Zhang, H., Huang, Q., Xu, A., & Wu, L. (2016). Spectroscopic probe to contribution of physicochemical transformations in the toxicity of aged ZnO NPs to Chlorella vulgaris : New insight into the variation of toxicity of ZnO NPs under aging process. Nanotoxicology, 10, 1177–1187.

    CAS  Google Scholar 

  • Zinicovscaia, I., Chiriac, T., Cepoi, L., Rudi, L., Culicov, O., Frontasyeva, M., & Rudic, V. (2017). Selenium uptake and assessment of the biochemical changes in Arthrospira ( Spirulina ) platensis biomass during the synthesis of selenium nanoparticles. Canadian Journal of Microbiology, 63, 27–34.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinouvassane Djearamane.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S.X.T., Wong, L.S., Dhanapal, A.C.T.A. et al. Toxicity of Metals and Metallic Nanoparticles on Nutritional Properties of Microalgae. Water Air Soil Pollut 231, 52 (2020). https://doi.org/10.1007/s11270-020-4413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-4413-5

Keywords

Navigation