Log in

Lime-Amended Semi-arid Soils in Retaining Copper, Lead, and Zinc from Aqueous Solutions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Most of the chemicals containing non-biodegradable metal pollutants from anthropogenic sources are highly mobile in nature. The only way to contain or limit their movement is through sorption and entrapment in the soil matrices. In this study, the sorptive response of the three most commonly found divalent metal contaminants, copper (Cu+2), lead (Pb+2), and zinc (Zn+2), are studied using two locally available semi-arid soils from Saudi Arabia. To enhance their retention capacity, these soils are amended with lime. The response to sorption at varying initial contaminant concentrations, pH conditions, temperature levels, and dilution ratios are investigated. Relying on empirical models (Langmuir and Freundlich), the nature of sorption (monolayer or heterogeneous) is ascertained. Further, kinetic models are employed to validate the type and nature of sorption that occurs (whether pseudo first-order or second-order). It is found that the experimental results correlate well with these empirical models for both the Al-Ghat and Al-Qatif soils when amended with lime and attenuate Cu, Pb, and Zn to satisfactory levels. The R 2 values are close to 1 for all the tested models. The order of sorption was Pb > Cu > Zn for these heavy metals, and also for soils and soil mixtures that were considered: Al-Qatif soil amended with 6 % lime > Al-Ghat soil with 6 % lime > Al-Qatif > Al-Ghat. Lime-treated soils sorbed 73, 65, and 60 % more than the untreated soils for Pb, Cu, and Zn, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alpaslan, B., & Yukselen, M. A. (2002). Remediation of lead contaminated soils by stabilization/solidification. Water, Air, and Soil Pollution, 133(1), 253–263.

    Article  CAS  Google Scholar 

  • ASTM C117-13 (2013). Standard Test Methods for determining the amount of material finer than 75-μm (No. 200) sieve in soils by washing. ASTM International, West Conshohocken, PA.

  • ASTM D1993. (2013). Standard Test Methods for precipitated silica—surface area by multipoint BET nitrogen adsorption. West Conshohocken: ASTM International.

    Google Scholar 

  • ASTM D2487-11 (2011). Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West Conshohocken: ASTM International.

  • ASTM D3987. (2012). Standard practice for shake extraction of solid waste with water. West Conshohocken: ASTM International.

    Google Scholar 

  • ASTM D4318. (2010). Standard Test Methods for liquid limit, plastic limit and plasticity index of soils. West Conshohocken: ASTM International.

    Google Scholar 

  • ASTM D4646. (2008). Standard Test Methods for 24 h batch-type measurement of contaminant sorption by soils and sediments. West Conshohocken: ASTM International.

  • ASTM D4648. (2008). Standard Test Method for laboratory miniature vane shear test for saturated fine-grained clayey soil. West Conshohocken: ASTM International.

  • ASTM D4972. (2013). Standard Test Method for pH of soils. West Conshohocken: ASTM International.

    Google Scholar 

  • ASTM D5856. (2015). Standard Test Method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameter. West Conshohocken: ASTM International.

    Google Scholar 

  • ASTM D854. (2014). Standard Test Methods for specific gravity of soil solids by water pycnometer. West Conshohocken: ASTM International.

    Google Scholar 

  • ASTM D2974. (2014). Standard Test Methods for moisture, ash and organic matter of peat and other organic soils. West Conshohocken: ASTM International.

    Google Scholar 

  • Azizian, S. (2004). Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276(1), 47–52.

    Article  CAS  Google Scholar 

  • Baranimotlagh, M., & Gholami, M. (2013). Time-dependent zinc desorption in some calcareous soils of Iran. Pedosphere, 23(2), 185–193.

    Article  CAS  Google Scholar 

  • Bayat, B. (2002). Combined removal of zinc (II) and cadmium (II) from aqueous solutions by adsorption onto high-calcium Turkish fly ash. Water, Air, and Soil Pollution, 136, 69–92.

    Article  CAS  Google Scholar 

  • Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2), 474–480.

    Article  CAS  Google Scholar 

  • Berthelsen, B. O., Ardal, L., & Steinnes, E. (1994). Mobility of heavy metals in pine forest soils as influenced by experimental acidification. Water, Air, and Soil Pollution, 7, 29–48.

    Article  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Sorption of a few heavy metals on natural and modified kaolinite and montmorillonite. Advances in Colloid and Interface Science, 140(2), 114–131.

    Article  CAS  Google Scholar 

  • Buchireddy, P. R., Bricka, R. M., & Gent, D. B. (2009). Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic. Journal of Hazardous Materials, 162(1), 490–497.

    Article  CAS  Google Scholar 

  • Chirenje, T., Rivero, C., & Ma, L. Q. (2002). Leachability of Cu and Ni in wood ash-amended soil as impacted by humic and fulvic acid. Geoderma, 108(1–2), 31–47.

    Article  CAS  Google Scholar 

  • Chirenje, T., Ma, L. Q., & Lu, L. (2006). Retention of Cd, Cu, Pb and Zn by wood ash, lime and fume dust. Water, Air, & Soil Pollution, 171, 301–314.

    Article  CAS  Google Scholar 

  • Çoruh, S., Elevli, S., Ergun, O. N., & Demir, G. (2013). Assessment of leaching characteristics of heavy metals from industrial leach waste. International Journal of Mineral Processing, 123, 165–171.

    Article  Google Scholar 

  • Damikouka, I., & Katsiri, A. (2009). Chemical speciation and heavy metal mobility in contaminated marine sediments. Journal of ASTM International, 6(6), 102169.

    Article  Google Scholar 

  • Demır, G., Çoruh, S., & Ergun, O. N. (2008). Leaching behavior and immobilization of heavy metals in zinc leach residue before and after thermal treatment. Environmental Progress, 27(4), 479–486.

    Article  Google Scholar 

  • Eades, J. L., & Grim, R. E. (1966). A Quick test to determine lime requirements for lime stabilization. Transportation Research Record, 139, 61–72.

    Google Scholar 

  • Erdem, M., & Özverdi, A. (2011). Environmental risk assessment and stabilization/solidification of zinc extraction residue: II. Stabilization/solidification. Hydrometallurgy, 105(3–4), 270–276.

    Article  CAS  Google Scholar 

  • Ghosh, S., Mukherjee, S., Sarkar, K., Al-Hamdan, A. Z., & Reddy, K. R. (2012). Experimental study on chromium containment by admixed soil liner. Journal of Environmental Engineering, 138(10), 1048–1057.

    Article  CAS  Google Scholar 

  • Ghosh, S., Mukherjee, S., Al-Hamdan, A. Z., & Reddy, K. R. (2013). Efficacy of fine-grained soil as landfill liner material for containment of chrome tannery sludge. Geotechnical and Geological Engineering Journal, 31(2), 493–500.

    Article  Google Scholar 

  • Harter, R. D. (1983). Effect of soil pH on adsorption of lead, copper, zinc, and nickel. Soil Science Society of America Journal, 47(1), 47–51.

    Article  CAS  Google Scholar 

  • Hernandez, A. B., Ferrasse, J.-H., Chaurand, P., Saveyn, H., Borscheneck, D., & Roche, N. (2011). Mineralogy and leachability of gasified sewage sludge solid residues. Journal of Hazardous Materials, 191(1–3), 219–227.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2006). Review of second-order models for sorption systems. Journal of Hazardous Materials, 136(3), 681–89.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Journal Process Biochemistry, 3(5), 451–465.

    Google Scholar 

  • Ho, T. C., Ghai, A. R., Guo, F., Wang, K. S., & Hooper, J. R. (1998). Sorption and desorption of mercury on sorbents at elevated temperatures. Journal of Combustion Science and Technology, 134(1–6), 263–289.

    Article  CAS  Google Scholar 

  • Hsiau, P. C., & Lo, S. L. (1998). Fractionation and leachability of Cu in lime-treated sewage sludge. Water Research, 32(4), 1103–1108.

    Article  CAS  Google Scholar 

  • Kamon, M., Zhang, H., Katsumi, T., & Inui, T. (2006). Biochemical effects on the long-term mobility of heavy metals in marine clay at coastal landfill sites. Journal of ASTM International, 3(7), 13326.

    Article  Google Scholar 

  • Kirk, D. W., Chan, C. C. Y., & Marsh, H. (2002). Chromium behavior during thermal treatment of MSW fly ash. Journal of Hazardous Materials, 90(1), 39–49.

    Article  CAS  Google Scholar 

  • Kvennås, M., Sparrevik, M., & Grini, R. S. (2009). Effects of amendment materials on cement-solidified contaminated marine sediments-mechanical stability and leaching of heavy metals. Journal of ASTM International, 6(4), 102146.

    Article  Google Scholar 

  • Larous, S., Meniai, A. H., & Lehocine, M. B. (2005). Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination, 185(1–3), 483–490.

    Article  CAS  Google Scholar 

  • Lo, I. M. C., Tang, C. I., Li, X. D., & Poon, C. S. (2000). Leaching and microstructural analysis of cement-based solidified wastes. Environmental Science & Technology, 34(23), 5038–5042.

    Article  CAS  Google Scholar 

  • Massacci, P., Piga, L., & Ferrini, M. (2000). Applications of physical and thermal treatment for the removal of mercury from contaminated materials. Minerals Engineering, 13(8–9), 963–967.

    Article  CAS  Google Scholar 

  • Meng, X., Hua, Z., Dermatas, D., Wang, W., & Kuo, H. Y. (1998). Immobilization of mercury(II) in contaminated soil with used tire rubber. Journal of Hazardous Materials, 57(1–3), 231–241.

    Article  CAS  Google Scholar 

  • Moghal, A. A. B., & Sivapullaiah, P. (2012). Retention characteristics of Cu2+, Pb2+ and Zn2+ from aqueous solutions by two types of low lime fly ashes. Journal of Toxicology and Environmental Chemistry, 94–10, 1941–1953.

    Article  Google Scholar 

  • Moghal, A. A. B., Mohammed, S. A. S., Basha, B. M., & Al-Shamrani, M. A. (2014a). Surface complexation modeling for stabilization of an industrial sludge by alternate materials. Geotechnical Special Publication, 234, 2235–2244.

    Google Scholar 

  • Moghal, A. A. B., Mohammed, S. A. S., Al-Shamrani, M. A., & Zahid, W. M. (2014b). Performance of soils and soil lime mixtures as liners to retain heavy metal ions in aqueous solutions. Geotechnical Special Publication, 241, 160–169.

    Google Scholar 

  • Moghal, A. A. B., Dafalla, M. A., Elkady, T. Y., & Al-Shamrani, M. A. (2015a). Lime leachability studies on treated expansive semi-arid soil. International Journal of Geomate, 9(2), 1467–1471.

    Google Scholar 

  • Moghal, A. A. B., Shamrani, M. A. A., & Zahid, W. M. (2015b). Heavy metal desorption studies on the artificially contaminated Al-Qatif soil. International Journal of Geomate, 8(2), 1323–1327.

    Google Scholar 

  • Mohammed, S. A. S., & Moghal, A. A. B. (2014). Soils amended with admixtures as stabilizing agent to retain heavy metals. Geotechnical Special Publication, 234, 2216–2226.

    Google Scholar 

  • Mohammed, S. A. S., & Naik, M. (2010). Characteristics of metals in aqueous solution by local materials with additives as liners for waste containment facilities. Journal of Water and Environment Technology, 8(1), 29–50.

    Article  Google Scholar 

  • Nemr, A. E. L. (2009). Potential of pomegranate husk carbon for Cr (VI) removal from wastewater: kinetic and isotherm studies. Journal of Hazardous Materials, 161, 132–141.

    Article  Google Scholar 

  • Özverdi, A., & Erdem, M. (2010). Environmental risk assessment and stabilization/solidification of zinc extraction residue: I. Environmental risk assessment. 100(3–4):103–109.

  • Pandian, N., Sridharan, A., & Rajasekhar, C. (2001). Heavy metal retention behavior of clayey soils. Journal of Testing and Evaluation, 29(4), 361.

    Article  CAS  Google Scholar 

  • Randall, P., & Chattopadhyay, S. (2004). Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes. Journal of Hazardous Materials, 114(1–3), 211–223.

    Article  CAS  Google Scholar 

  • Reddy, K. R. (2010). Technical challenges to in-situ remediation of polluted sites. Geotechnical and Geological Engineering Journal, 28(3), 211–221.

    Article  Google Scholar 

  • Reddy, K. R. (2014). Evolution of geoenvironmental engineering. Environmental Geotechnics, 1(3), 136–141.

    Article  Google Scholar 

  • Reddy, K. R., Danda, S., & Yükselen-Aksoy, Y. (2010). Sequestration of heavy metals in soils from two polluted industrial sites: Implications on remediation. Land Contamination and Reclamation Journal, 18(1), 13–23.

    Article  Google Scholar 

  • Rigol, A., Mateu, J., González-Núñez, R., Rauret, G., & Vidal, M. (2009). pH(stat) vs. single extraction tests to evaluate heavy metals and arsenic leachability in environmental samples. Analytica Chimica Acta, 632(1), 69–79.

    Article  CAS  Google Scholar 

  • Rodríguez-Jordá, M. P., Garrido, F., & García-González, M. T. (2012). Effect of the addition of industrial by-products on Cu, Zn, Pb and As leachability in a mine sediment. Journal of Hazardous Materials, 213–214, 46–54.

    Article  Google Scholar 

  • Sanchez, F., Barna, R., Garrabrants, A., Kosson, D. S., & Moszkowicz, P. (2000). Environmental assessment of a cement-based solidified soil contaminated with lead. Chemical Engineering Science, 55(1), 113–128.

    Article  CAS  Google Scholar 

  • Voglar, G. E., & Leštan, D. (2013). Equilibrium leaching of toxic elements from cement stabilized soil. Journal of Hazardous Materials, 246–247, 18–25.

    Article  Google Scholar 

  • Yong, R.N., MacDonald, E.M. (1998). Influence of pH, metal concentration and soil component removal on retention of Pb and Cu by an Illitic soil. Geomedia (229–253). Academic Press

  • Zupancic, M., Bukovec, P., Milacic, R., & Scancar, J. (2006). Critical evaluation of the use of the hydroxyapatite as a stabilizing agent to reduce the mobility of Zn and Ni in sewage sludge amended soils. Waste Management, 26(12), 1392–1399.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdul Aziz City for Science and Technology, Kingdom of Saudi Arabia, award number 12ENV2583-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Ali Baig Moghal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghal, A.A.B., Reddy, K.R., Mohammed, S.A.S. et al. Lime-Amended Semi-arid Soils in Retaining Copper, Lead, and Zinc from Aqueous Solutions. Water Air Soil Pollut 227, 372 (2016). https://doi.org/10.1007/s11270-016-3054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3054-1

Keywords

Navigation