Log in

Sorption of Cadmium in Some Soil Amendments for In Situ Recovery of Contaminated Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Although Cd concentrations in uncontaminated soils are usually low, pollution of soils by Cd from different sources of contamination pose problems. The application of soil amendments to increase plant production has been used as a viable alternative for recovery of soils contaminated with Cd. However, emphasis needs to be placed on the nature of Cd sorption processes in order that the amendments can be managed appropriately. A range of materials including vermicompost, sugarcane filter cake, palm kernel pie, lime, phosphate rock, and zeolite were used for the sorption studies. Total and nonspecific Cd sorption was estimated by batch experiments, and specific sorption was obtained by the difference between the former and the latter. Best adsorbents for specific Cd sorption from soil amendments were lime and zeolite. Langmuir adsorption isotherms fitted reasonably well in the experimental data, and their constants were evaluated, with R 2 values from 0.80 to 0.99. The maximum adsorption capacity of Cd(II) was higher for mineral amendments than for organic amendments and ranged from 0.89 to 10.86 g kg−1. The small value (0.08 L mg−1) of the constant related to the energy of adsorption indicated that Cd was bound weakly to the palm kernel pie. Thermodynamic parameter, the Gibbs free energy, was calculated for each system, and the negative values obtained confirm that the adsorption processes were spontaneous. The values of separation factor, R L, which has been used to predict affinity between adsorbate and adsorbent were between 0 and 1, indicating that sorption was very favorable for Cd(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142.

    Article  CAS  Google Scholar 

  • Aguiar, P. M. M. R., & Novaes, A. C. (2002). Remoção de metais pesados de efluentes industriais por aluminossilicatos. Química Nova, 25, 1145–1154.

    Article  Google Scholar 

  • Basta, N. T., & McGrowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127, 73–82.

    Article  CAS  Google Scholar 

  • Bolan, N. S., Naidu, R., Syers, J. K., & Tillman, R. W. (1999). Surface charge and solute interactions in soils. Advances in Agronomy, 67, 88–141.

    Article  Google Scholar 

  • Brown, S., Christensen, B., Lombi, E., McLaughlin, M., McGrath, S., Colpaert, J., et al. (2005). An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environmental Pollution, 138, 34–45.

    Article  CAS  Google Scholar 

  • Costa, S. E. T., Guillerme, G. L. R., Curi, N., Lopes, G., Visioli, L. E., & Oliveira, A. L. C. (2009). Caracterização de subproduto da indústria do alumínio e seu uso na retenção de cádmio e chumbo em sistemas monoelementares. Quimica Nova, 32, 868–874.

    Article  CAS  Google Scholar 

  • Dias, N. M. P., Alleoni, L. R. F., Casagrande, J. C., & Camargo, O. A. (2001). Isotermas de adsorção de cádmio em solos ácricos. Revista Brasileira de Engenharia Agrícola e Ambiental, 5, 229–234.

    Article  Google Scholar 

  • EPA (Environmental Protection Agency). (1999). Understanding variation in partition coefficient, Kd, values. Volume I: The Kd model, methods of measurement, and application of chemical reaction codes. United States.

  • Erses, A. S., Fazal, M. A., Onaya, T. T., & Craig, W. H. (2005). Determination of solidwaste sorption capacity for selected heavy metals in landfills. Journal of Hazardous Materials, 121, 223–232.

    Article  Google Scholar 

  • Giles, C. H., & Smith, D. A. (1974). General treatment and classification of the solute sorption isotherms. Journal of Colloid and Interface Science, 47, 755–765.

    Article  CAS  Google Scholar 

  • Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1996). Pore- and solid-diffusion kinetics in fixed bed adsorption under constant-pattern conditions. Industrial and Engineering Chemistry Fundamentals, 5, 212–223.

    Article  Google Scholar 

  • Hamon, R. E., McLaughlin, M. J., & Cozens, G. (2002). Mechanisms of attenuation of metal availability in situ remediation treatments. Environmental Science & Technology, 36, 3991–3996.

    Article  CAS  Google Scholar 

  • Harter, R. D. (1984). Curve-fit errors in Langmuir adsorption maxima. Soil Science Society of America Journal, 48, 749–752.

    Article  Google Scholar 

  • Harter, R. D., & Naidu, R. (2001). An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Science Society of America Journal, 65, 597–612.

    Article  CAS  Google Scholar 

  • Hooda, P. S. (2010). Basic principles, processes, sampling and analytical aspects. In P. S. Hooda (Ed.), Trace elements in soil. London: Willey.

    Google Scholar 

  • Jordão, C. P., Fernandes, R. B. A., Ribeiro, K. L., Barros, P. M., Fontes, M. P. F., & Souza, F. M. P. (2010). A study on Al(III) and Fe(II) ions sorption by cattle manure vermicompost. Water, Air, and Soil Pollution, 210, 51–61.

    Article  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Florida: CRC Press.

    Google Scholar 

  • Khan, A. A., & Singh, R. P. (1987). Adsorption thermodynamics of carbofuran on Sn(IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloids and Surfaces, 24, 33–42.

    Article  CAS  Google Scholar 

  • Kwon, J. S., Yun, S. T., Kim, S. O., Mayer, B., & Hutcheon, I. (2005). Sorption of Zn(II) in aqueous solutions by scoria. Chemosphere, 60, 1416–1426.

    Article  CAS  Google Scholar 

  • Mendonça, E. S., & Matos, E. S. (2005). Matéria Orgánica do Solo: Métodos de Análise. Viçosa: Imprensa Universitária da Universidade Federal de Viçosa.

  • Oste, L., Lexmond, T. M., & Van Riemsdijk, W. H. (2002). Metal immobilization in soils using synthetic zeolites. Journal of Environmental Quality, 31, 813–821.

    Article  CAS  Google Scholar 

  • Pierangeli, M. A. P., Guillerme, L. R. G., Curi, N., Costa, E. T. S., Lima, J. M., Melo Marques, J. J. G., et al. (2007). Individual and competitive sorption of heavy metals in oxisols with contrasting mineralogy. Revista Brasileira de Ciência do Solo, 31, 819–826.

    Article  CAS  Google Scholar 

  • Pino, G. H., & Torem, M. L. (2011). Aspectos fundamentais da biossorção de metais não ferrosos—estudo de caso. Tecnologia em Metalurgia, Materiais e Mineração, 8, 57–63.

    Article  CAS  Google Scholar 

  • Rao, S. K., Anand, S., & Venkateswarlu, P. (2010). Adsorption of cadmium (II) ions from aqueous solution by Tectona grandis L:F: (Teak leaves powder). Bioresources, 5, 438–454.

    CAS  Google Scholar 

  • Rawat, J. P., Umar Iraqi, S. M., & Singh, R. P. (1996). Sorption equilibria of cobalt (II) on two types of Indian soils—The natural ion exchangers. Colloids and Surfaces, 117, 183–188.

    Article  CAS  Google Scholar 

  • Rouibah, K., Meniai, A. H., Rouibah, M. T., & Deffous, L. (2009). Elimination of chromium (VI) and cadmium (II) from aqueous solutions by adsorption olive stones. The Open Chemical Engineering Journal, 3, 41–48.

    CAS  Google Scholar 

  • Sanchez, R. A., & Espósito, B. P. (2011). Preparation of sugarcane bagasse modified with the thiophosphoryl function and its capacity for cadmium adsorption. Bioresources, 6, 2448–2459.

    CAS  Google Scholar 

  • Shah, B. A., Shah, A. V., & Tailor, R. V. (2011). Characterization of hydroxybenzoic acid chelating resins: Equilibrium, kinetics, and isotherm profiles for Cd (II) and Pb (II) uptake. Journal of the Serbian Chemical Society, 76, 903–922.

    Article  CAS  Google Scholar 

  • Silveira, M. L., Alleoni, F. L. R., & Chang, A. (2008). Condicionadores químicos de solo e retenção e distribuição de cádio, zinco e cobre em Latossolos tratados com biossólido. Revista Brasileira de Ciência do Solo, 32, 1087–1098.

    Article  CAS  Google Scholar 

  • Singh, B. A., & Oste, L. (2001). In situ immobilization of metals in contaminated or naturally metal-rich soils. Environmental Reviews, 9, 81–97.

    Article  CAS  Google Scholar 

  • Sopper, W. E. (1993). Municipal sludge use for land reclamation. Ann Arbor: Lewis Publishers.

    Google Scholar 

  • Tunali, S., & Akar, T. (2006). Zn(II) biosorption properties of Botrytis cinerea biomass. Journal of Hazardous Materials, B131, 137–145.

    Article  Google Scholar 

  • Wahba, M. M., & Zaghloul, A. M. (2007). Adsorption characteristics of some heavy metals by some soil minerals. Journal of Applied Science Research, 3, 421–426.

    CAS  Google Scholar 

  • Yun, Y. S., & Volesky, B. (2003). Modeling of lithium interference in cadmium biosorption. Environmental Science & Technology, 37, 3601–3608.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Ecuador, for leave of absence. We also thank the Secretaria Nacional de Educación Superior, Ciencia, Tecnologia e Innovación, Ecuador, and the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Brazil, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Jordão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo Zenteno, M.D., de Freitas, R.C.A., Fernandes, R.B.A. et al. Sorption of Cadmium in Some Soil Amendments for In Situ Recovery of Contaminated Soils. Water Air Soil Pollut 224, 1418 (2013). https://doi.org/10.1007/s11270-012-1418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1418-8

Keywords

Navigation