Log in

Removal of Endocrine Disrupting Chemicals in Wastewater Treatment by Fenton-Like Oxidation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The presence of endocrine-disrupting chemicals (EDCs) in wastewater effluent is a major concern to the scientific community. This research effort was aimed at investigating Fenton-like degradation of two EDCs 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). The results of the study showed that E2 and EE2 were effectively removed by the Fenton-like oxidation process. Removal efficiencies of 95% and 98% at ferric concentration of 1 × 10−3 M (58.6 mg l−1) were achieved for E2 and EE2, respectively. The kinetics of Fenton-like degradation of E2 and EE2 were adequately described by the pseudo second order kinetic model. Values of 27.8 and 22.5 kJ mol−1 were obtained for the activation energy for E2 and EE2, respectively, from the Arrhenius-type plot, showing that the process does not just involve radical reactions but also intermediate reaction steps involving radical–molecule or ion–molecule reactions. The presence of high dissolved organics in wastewater significantly reduced the removal efficiencies. The reaction by-products for E2 and EE2 were more stable to the oxidation process and more readily biodegradable. Fenton-like oxidations therefore offers a promising alternative for the removal of these EDCs in wastewater treatment applications at the tertiary treatment stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA, AWWA, & WEF. (1992). Standard methods for the examination or water and wastewater (18th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Bae, J. H., Kim, S. K., & Chang, H. S. (1997). Treatment of landfill leachates: ammonia removal via nitrification and denitrification and further COD reduction via Fenton’s treatment followed by activated sludge. Water Science and Technology, 36(12), 341–348.

    Article  CAS  Google Scholar 

  • Birkett, J. W., & Lester, J. N. (2003). Endocrine disrupters in wastewater and sludge treatment processes. Boca Raton: CRC.

    Google Scholar 

  • Christensen, H., Sehestedand, K., & Logager, T. (1993). The reaction of hydrogen peroxide with Fe(II) ions at elevated temperatures. Radiation Physics and Chemistry, 41(3), 575–578.

    Article  CAS  Google Scholar 

  • Deborde, M., & von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment-kinetic and mechanisms: a critical review. Water Research, 42(1–2), 13–51.

    Article  CAS  Google Scholar 

  • Diamanti-Kandarakis, E., Bourguignon, J. P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., et al. (2009). Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocrine Review, 30, 293–342.

    Article  CAS  Google Scholar 

  • Esperanza, M., Suidan, M. T., Marfil-Vega, R., Gonzalez, C., Sorial, G. A., McCauley, P., et al. (2007). Fate of sex hormones in two pilot-scale municipal wastewater treatment plants: conventional treatment. Chemosphere, 66(8), 1535–1544.

    Article  CAS  Google Scholar 

  • Esplugas, S., Bila, D. M., Gustavo, L., Krause, T., & Dezotti, M. (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of Hazardous Materials, 149(3), 631–642.

    Article  CAS  Google Scholar 

  • El-Gohary, F. A., Badawy, M. I., El-Khateeb, M. A., & El-Kalliny, A. S. (2009). Integrated treatment of olive mill wastewater (Omw) by the combination of Fenton’s reaction and anaerobic treatment. Journal of Hazardous Materials, 162(2–3), 1536–1541.

    Article  CAS  Google Scholar 

  • Gomez, M. J., Martinez Bueno, M. J., Lacorte, S., Fernandez-Alba, A. R., & Aguera, A. (2007). Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere, 66(6), 993–1002.

    Article  CAS  Google Scholar 

  • Gotvajn, A. Z., & Zagorc-Končan, J. (2005). Combination of Fenton and biological oxidation for treatment of heavily polluted fermentation waste broth. Acta Chimica Slovenica, 52, 131–137.

    CAS  Google Scholar 

  • Guedes, A. M. F. M., Madeira, L. M. P., Boaventura, R. A. R., & Costa, C. A. V. (2003). Fenton oxidation of cork cooking wastewater—overall kinetics. Water Research, 37(13), 3061–3069.

    Article  CAS  Google Scholar 

  • Hashimoto, T., Onda, K., Nakamura, Y., Tada, K., Miya, A., & Murakami, T. (2007). Comparison of natural estrogen removal efficiency in the conventional activated sludge process and the oxidation ditch process. Water Research, 41(10), 2117–2126.

    CAS  Google Scholar 

  • Hickey, W. J., Arnold, S. M., & Harris, R. F. (1995). Degradation of atrazine by Fenton’s reagent: condition optimisation and product quantification. Environmental Science and Technology, 29(8), 2083–2089.

    Article  Google Scholar 

  • Hsueh, C. L., Huang, Y. H., Wang, C. C., & Chen, C. Y. (2005). Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58(10), 1409–1414.

    Article  CAS  Google Scholar 

  • Ifelebuegu, A. O., Lester, J. N., Churchley, J., & Cartmell, E. (2006). Removal of an endocrine disrupting chemical (17α–ethyloestradiol) from wastewater effluent by activated carbon. Environmental Technology, 27(12), 1343–1349.

    Article  CAS  Google Scholar 

  • Imai, A., Fukushima, T., Matsushige, K., Kim, Y. H., & Choi, K. (2002). Characterisation of dissolved organic matter in effluents from wastewater treatment plants. Water Research, 36(4), 859–870.

    Article  CAS  Google Scholar 

  • Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55(9), 1235–1243.

    Article  CAS  Google Scholar 

  • Kwon, B. G., Lee, D. S., Kang, N., & Yoon, J. (1999). Characteristics of pchlorophenol oxidation by Fenton’s reagent. Water Research, 33(9), 2110–2118.

    Article  Google Scholar 

  • Lindsey, M. E., & Tarr, M. A. (2000a). Inhibition of hydroxide radical reaction with aromatics by dissolved natural organic matter. Environmental Science and Technology, 34(3), 444–449.

    Article  CAS  Google Scholar 

  • Lindsey, M. E., & Tarr, M. A. (2000b). Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere, 41(3), 409–417.

    Article  CAS  Google Scholar 

  • Lucas, M. S., & Peres, J. A. (2009). Removal of COD from olive mill wastewater by Fenton’s reagent: kinetic study. Journal of Hazardous Materials, 168(2–3), 1258–1259.

    Google Scholar 

  • Mendez-Arriaga, F., Esplugas, S., & Gimenez, J. (2010). Degradation of the emerging contaminant ibruprofen in water by photo-Fenton. Water Research, 44(2), 589–595.

    Article  CAS  Google Scholar 

  • Nakada, N., Tanishima, T., Shinokara, H., Kiri, K., & Takada, H. (2006). Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Research, 40(17), 3297–3303.

    Article  CAS  Google Scholar 

  • Neyens, E., & Baeyens, J. A. (2003). Review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1–3), 33–55.

    Article  CAS  Google Scholar 

  • Torres, R., Pétrier, C., Combet, E., Carrierm, M., & Pulgarin, C. (2008). Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrasonic Sonochemistry, 15(4), 605–611.

    Article  CAS  Google Scholar 

  • USEPA. (1984). Definition and procedure for the determination of MDL: Revision 1.11. Federal Regulations, 49, 43430–43431.

    Google Scholar 

  • USEPA. (2001). Removal of endocrine disruptor chemicals using water treatment processes, 625/R-00/015. Washington DC: USEPA.

    Google Scholar 

  • Van Emmerik, T., Angove, M. J., Johnson, B. B., Wells, J. D., & Fernandes, M. B. (2003). Sorption of 17β-estradiol onto selected soil minerals. Journal of Colloid and Interface Science, 266(1), 33–39.

    Article  Google Scholar 

  • Wang, Q., & Lemley, A. T. (2002). Oxidation of diazinon by anodic Fenton’s treatment. Water Research, 36(13), 3237–3244.

    Article  CAS  Google Scholar 

  • Xu, X. R., Wang, W. H., Li, H. B., & Gu, J. D. (2004). Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57(7), 595–600.

    Article  CAS  Google Scholar 

  • Yoon, Y., Westerhoff, P., Snyder, S. A., & Esparza, M. (2003). HPLC-fluorescence detection and adsorption of Bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon’. Water Research, 37(14), 3530–3537.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to express their gratitude to the staff at Coventry University Environmental Laboratory notably, Anne Nuttall and Neil Thompson for their support during the laboratory sessions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustine O. Ifelebuegu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ifelebuegu, A.O., Ezenwa, C.P. Removal of Endocrine Disrupting Chemicals in Wastewater Treatment by Fenton-Like Oxidation. Water Air Soil Pollut 217, 213–220 (2011). https://doi.org/10.1007/s11270-010-0580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0580-0

Keywords

Navigation