Log in

Assessment of the Potential Ecological Risks Posed by Antifouling Booster Biocides to the Marine Ecosystem of the Gulf of Napoli (Italy)

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Risks posed by antifouling agents (irgarol 1051, diuron and dichlofluanid) to the aquatic environment of the Gulf of Napoli have been estimated. Seawater samples were collected monthly in selected harbours and marinas of this area during the boating season (March to November 2005) and off-season (January 2006). Concentration levels have been measured, and the resulting data used to perform a probabilistic ecological risk assessment independently on each biocide. Diuron exhibited higher concentration levels than irgarol 1051 in all the investigated locations: Dissolved concentrations of diuron ranged from <1 to 1,380 ng l−1, whereas dissolved concentrations of irgarol 1051 ranged from <0.2 to 173 ng l−1. Contamination appears to be largely dependent on the type and configuration of sampling sites and on the residence time and the density of boats. High levels of booster biocides were associated with marinas housing several recreational water craft and/or fishing boats, whilst commercial ports usually exhibited low concentrations. A seasonal influence was observed, with peak and lowest values found in early summer months and during winter, respectively. The comparison of the respective toxicity benchmarks, expressed as 10th percentiles, suggests that plant species are more sensitive to irgarol 1051 (297 ng l−1) than diuron (4,846 ng l−1). Based on these conservative effect thresholds for plants, ecological risk from the single investigated biocides can be judged to be low in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Basheer, C., Tan, K. S., & Lee, H. K. (2002). Organotin and irgarol 1051 contamination in Singapore coastal waters. Marine Pollution Bulletin, 44, 697–703. doi:10.1016/S0025-326X(01)00330-7.

    Article  CAS  Google Scholar 

  • Bednarz, T. (1981). The effect of pesticides on the growth of green and blue-green algae cultures. Acta Hydrobiologica (Cracow), 23, 155–172.

    CAS  Google Scholar 

  • Biselli, S., Bester, K., Hűhnerfuss, H., & Fent, K. (2000). Concentrations of the antifouling compound irgarol 1051 and of organotins in water and sediments of German North and Baltic Sea Marinas. Marine Pollution Bulletin, 40, 233–243. doi:10.1016/S0025-326X(99)00177-0.

    Article  CAS  Google Scholar 

  • Bowman, J. C., Readman, J. W., & Zhou, J. L. (2003). Seasonal variability in the concentrations of irgarol 1051 in Brighton marina, UK; including the impact of dredging. Marine Pollution Bulletin, 46, 444–451. doi:10.1016/S0025-326X(02)00464-2.

    Article  CAS  Google Scholar 

  • Carbery, K., Owen, R., Frickers, T., Otero, E., & Readman, J. W. (2006). Contamination of Caribbean coastal waters by antifouling herbicide Irgarol 1051. Marine Pollution Bulletin, 52, 635–644. doi:10.1016/j.marpolbul.2005.10.013.

    Article  CAS  Google Scholar 

  • Chesworth, J. C., Donkin, M. E., & Brown, M. T. (2004). The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.). Aquatic Toxicology (Amsterdam, Netherlands), 66, 293–305. doi:10.1016/j.aquatox.2003.10.002.

    CAS  Google Scholar 

  • Cresswell, T., Richards, J. P., Glegg, A. G., & Readman, J. W. (2006). The impact of legislation on the usage and environmental concentrations of irgarol 1051 in UK coastal waters. Marine Pollution Bulletin, 52, 1169–1175. doi:10.1016/j.marpolbul.2006.01.014.

    Article  CAS  Google Scholar 

  • Di Landa, G., Ansanelli, G., Ciccoli, R., & Cremisini, C. (2006). Occurence of antifouling paint booster biocides in selected harbors and marinas inside the Gulf of Napoli: A preliminary survey. Marine Pollution Bulletin, 52, 1541–1546. doi:10.1016/j.marpolbul.2006.05.027.

    Article  Google Scholar 

  • Fernandez-Alba, A. R., Hernando, M. D., Piedra, L., & Chisti, Y. (2002). Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Analytica Chimica Acta, 456, 303–312. doi:10.1016/S0003-2670(02)00037-5.

    Article  CAS  Google Scholar 

  • Gatidou, G., Thomaidis, N. S., & Zhou, J. L. (2007). Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifoulig paints. Environment International, 33, 70–77. doi:10.1016/j.envint.2006.07.002.

    Article  CAS  Google Scholar 

  • Giacomazzi, S., & Cochet, N. (2004). Environmental impact of diuron transformation: a review. Chemosphere, 56, 1021–1032. doi:10.1016/j.chemosphere.2004.04.061.

    Article  CAS  Google Scholar 

  • Haglund, K., Bjbrklund, M., Gunnare, S., Sandberg, A., Olander, U., & Pedersen, M. (1996). New method for toxicity assessment in marine and brackish environments using the macroalga Gracilaria tenuistipitata (Gracilariales, Rhodophyta). Hydrobiologia, 326/327, 317–325. doi:10.1007/BF00047825.

    Article  CAS  Google Scholar 

  • Hall Jr, L. W., & Gardinali, P. R. (2004). Ecological risk assessment for Irgarol 1051 and its major metabolite in United States Surface Waters. Human and Ecological Risk Assessment, 10, 525–542. doi:10.1080/10807030490452188.

    Article  CAS  Google Scholar 

  • Hall Jr, L. W., Giddings, J. M., Solomon, K. R., & Balcomb, R. (1999). An Ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints. Critical Reviews in Toxicology, 29, 367–437.

    CAS  Google Scholar 

  • Hall Jr, L. W., Killen, W. D., Anderson, R. D., Gardinali, P. R., & Balcomb, R. (2005). Monitoring of Irgarol 1051 concentrations with concurrent phytoplankton evaluations in East Cost areas of the United States. Marine Pollution Bulletin, 50, 668–681. doi:10.1016/j.marpolbul.2005.02.025.

    Article  CAS  Google Scholar 

  • Harino, H., Mori, Y., Yamaguchi, Y., Shibata, K., & Senda, T. (2005). Monitoring of antifouling booster biocides in water and sediment from the Port of Osaka, Japan. Archives of Environmental Contamination and Toxicology, 48, 303–310. doi:10.1007/s00244-004-0084-2.

    Article  CAS  Google Scholar 

  • Holt, J. S., Powles, S. B., & Holtum, J. A. M. (1993). Mechanisms and agronomic aspects of herbicide resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 203–229. doi:10.1146/annurev.pp.44.060193.001223.

    Article  CAS  Google Scholar 

  • Hollister, T., & Walsh, G. E. (1973). Differential responses of marine phytoplankton to herbicides: oxygen evolution. Bulletin of Environmental Contamination and Toxicology, 9, 291–295. doi:10.1007/BF01684786.

    Article  CAS  Google Scholar 

  • Huang, X. J., Pedersen, T., Fischer, M., White, R., & Young, T. M. (2004). Herbicide runoff along highways. 1. Field observations. Environmental Science & Technology, 38, 3263–3271. doi:10.1021/es034847h.

    Article  CAS  Google Scholar 

  • IMO (2001). International convention on the control of harmful anti-fouling systems on ships. London: International Maritime Organization.

    Google Scholar 

  • Konstantinou, I. K., & Albanis, T. A. (2004). Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environment International, 30, 235–248. doi:10.1016/S0160-4120(03)00176-4.

    Article  CAS  Google Scholar 

  • Koutsaftis, A., & Aoyama, I. (2006). The Interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Environmental Toxicology, 21, 432–439. doi:10.1002/tox.20202.

    Article  CAS  Google Scholar 

  • Lamoree, M. H., Swart, C. P., van der Horst, A., & van Hattum, B. (2002). Determination of diuron and the antifouling paint biocide irgarol 1051 in Dutch marinas and coastal waters. Journal of Chromatography. A, 970, 183–190. doi:10.1016/S0021-9673(02)00878-6.

    Article  CAS  Google Scholar 

  • Liu, D., Pacepavicius, G. J., Maguire, R. J., Lau, Y. L., Okamura, H., & Ayoama, I. (1999). Survey for the occurrence of the new antifouling compound irgarol 1051 in the aquatic environment. Water Research, 33, 2833–2843. doi:10.1016/S0043-1354(98)00501-6.

    Article  CAS  Google Scholar 

  • Manzo, S., De Luca Picione, F., Di Landa, G., Avagliano, S., Ansanelli, G., Parrella, L., et al. (2006). Ecotoxicological evaluation of contamination by new antifouling compounds in harbour seawater. SETAC Europe 16th Annual Meeting. The Netherlands: The Hague.

    Google Scholar 

  • Martinez, K., Ferrer, I., Hernando, M. D., Fernandez-Alba, A. R., Marce, R. M., Borrull, F., et al. (2001). Occurrence of antifouling biocides in the Spanish Mediterranean marine environment. Environmental Technology, 22, 543–552. doi:10.1080/09593332208618258.

    Article  CAS  Google Scholar 

  • McFeters, A. G., Bond, P. J., Olson, S. B., & Tchan, Y. T. (1983). A comparison of microbial bioassays for the detection of aquatic toxicants. Water Research, 17, 1757–1762. doi:10.1016/0043-1354(83)90197-5.

    Article  CAS  Google Scholar 

  • Moreland, D. E. (1980). Mechanisms of action of herbicides. Annual Review of Plant Physiology, 31, 597–638. doi:10.1146/annurev.pp.31.060180.003121.

    Article  CAS  Google Scholar 

  • Naessens, M., Leclerc, J. C., & Tran-Minh, C. (2000). Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicology and Environmental Safety, 46, 181–185. doi:10.1006/eesa.1999.1904.

    Article  CAS  Google Scholar 

  • Okamura, H., Aoyama, I., Liu, D., Maguire, J., Pacepavicius, G. J., & Lau, Y. L. (1999). Photodegradation of Irgarol 1051 in water. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 34, 225–238.

    Google Scholar 

  • Okamura, H., Aoyama, I., Liu, D., Maguire, R. J., Pacepavicius, G. J., & Lau, Y. L. (2000). Fate and ecotoxcity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Research, 34, 3523–3530. doi:10.1016/S0043-1354(00)00095-6.

    Article  CAS  Google Scholar 

  • Okamura, H., Ayoama, I., Ono, Y., & Nishida, T. (2003). Antifouling herbicides in the coastal waters of western Japan. Marine Pollution Bulletin, 47, 59–67. doi:10.1016/S0025-326X(02)00418-6.

    Article  CAS  Google Scholar 

  • Okamura, H., Watanabe, T., Aoyama, I., & Hasobe, M. (2002). Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere, 46, 945–951. doi:10.1016/S0045-6535(01)00204-1.

    Article  CAS  Google Scholar 

  • Omae, I. (2003). Organotin antifouling paints and their alternatives. Applied Organometallic Chemistry, 17, 81–105. doi:10.1002/aoc.396.

    Article  CAS  Google Scholar 

  • Overnell, J. (1975). The effect of some heavy metal ions on photosynthesis in a freshwater alga. Pesticide Biochemistry and Physiology, 5, 19–26. doi:10.1016/0048-3575(75)90039-5.

    Article  CAS  Google Scholar 

  • PAN. (2006). Pesticide Database. Retrieved December 2006 from http://www.pesticideinfo.org/Index.html.

  • Regan, H. M., Akcakaya, H. R., Ferson, S., Root, K. V., Carroll, S., & Ginzburg, L. R. (2003). Treatments of uncertainty and variability in ecological risk assessment of single-species populations. Human and Ecological Risk Assessment, 9, 889–906. doi:10.1080/713610015.

    Article  Google Scholar 

  • Sakkas, V. A., Konstantinou, I. K., & Albanis, T. A. (2001). Photodegradation study of the antifouling booster biocide dichlofluanid in aqueous media by gas chromatographic techniques. Journal of Chromatography. A, 930, 135–144. doi:10.1016/S0021-9673(01)01193-1.

    Article  CAS  Google Scholar 

  • Sakkas, V. A., Konstantinou, I. K., Lambropoulou, D. A., & Albanis, T. A. (2002). Survey for the occurrence of antifouling paint booster biocides in the aquatic environment of Greece. Environmental Science and Pollution Research, 9, 327–332.

    Article  CAS  Google Scholar 

  • Sargent, C. J., Bowman, J. C., & Zhou, J. L. (2000). Levels of antifoulant irgarol 1051 in the Conwy marina, North Wales. Chemosphere, 41, 1755–1760. doi:10.1016/S0045-6535(00)00051-5.

    Article  CAS  Google Scholar 

  • Scarlett, A., Donkin, M. E., Fileman, T. W., & Donkin, P. (1997). Occurrence of the marine antifouling agent Irgarol 1051 within the Plymouth Sound Locality: implications for the green macroalga Enteromorpha intestinalis. Marine Pollution Bulletin, 34, 645–651. doi:10.1016/S0025-326X(96)00187-7.

    Article  CAS  Google Scholar 

  • Scarlett, A., Donkin, P., Fileman, T. W., Evans, S. V., & Donkin, M. E. (1999). Risk posed by the antifouling agent Irgarol 1051 to the seagrass, Zostera marina. Aquatic Toxicology (Amsterdam, Netherlands), 45, 159–170. doi:10.1016/S0166-445X(98)00098-8.

    CAS  Google Scholar 

  • Schafer, H., Hettler, H., Fritsche, U., Pitzen, G., Roderer, G., & Wenzel, A. (1994). Biotests using unicellular algae and ciliates for predicting long-term effects of toxicants. Ecotoxicology and Environmental Safety, 27, 64–81. doi:10.1006/eesa.1994.1007.

    Article  CAS  Google Scholar 

  • Solomon, K. R., Baker, D. B., Richards, R. P., & Dixon, K. R. (1996). Ecological risk assessment of atrazine in North American surface waters. Environmental Toxicology and Chemistry, 15, 31–76. doi:10.1897/1551-5028(1996)015<0031:ERAOAI>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Thomas, K. V., Fileman, T. W., Readman, J. W., & Waldock, M. J. (2001). Antifouling paint booster biocides in the UK costal environment and potential risks of biological effects. Marine Pollution Bulletin, 42, 677–688. doi:10.1016/S0025-326X(00)00216-2.

    Article  CAS  Google Scholar 

  • Thomas, K. V., McHugh, M., Hilton, M., & Waldock, M. (2003). Increased persistence of antifouling paint biocides when associated with paint particles. Environmental Pollution, 123, 153–161. doi:10.1016/S0269-7491(02)00343-3.

    Article  CAS  Google Scholar 

  • Thomas, K. V., McHugh, M., & Waldock, M. (2002). Antifouling paint booster biocides in UK coastal waters: Inputs, occurrence and environmental fate. The Science of the Total Environment, 293, 117–127. doi:10.1016/S0048-9697(01)01153-6.

    Article  CAS  Google Scholar 

  • Teisseire, H., Couderchet, M., & Vernet, G. (1999). Phytotoxicity of diuron alone and in combination with copper or folpet on duckweed (Lemna minor). Environmental Pollution, 106, 39–45. doi:10.1016/S0269-7491(99)00066-4.

    Article  CAS  Google Scholar 

  • US EPA. (1998). Guidelines for ecological risk assessment. EPA/630/R-95/002F, Washington DC.

  • Van Wezel, A. P., & van Vlaardingen, P. (2004). Environmental risk limits for antifouling substances. Aquatic Toxicology (Amsterdam, Netherlands), 66, 427–444. doi:10.1016/j.aquatox.2003.11.003.

    Google Scholar 

  • Vedrine, C., Leclerc, J. C., Durrieu, C., & Tran-Minh, C. (2003). Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosensors & Bioelectronics, 18, 457–463. doi:10.1016/S0956-5663(02)00157-4.

    Article  CAS  Google Scholar 

  • Voulvoulis, N., Scrimshaw, M. D., & Lester, J. N. (1999). Analytical methods for the determination of 9 antifouling paint boosterbiocides in estuarinewater samples. Chemosphere, 38, 3503–3516. doi:10.1016/S0045-6535(98)00580-3.

    Article  CAS  Google Scholar 

  • Voulvoulis, N., Scrimshaw, M. D., & Lester, J. N. (2000). Occurrence of four biocides utilized in antifouling paints, as alternatives to organotin compounds, in waters and sediments of a commercial estuary in the UK. Marine Pollution Bulletin, 40, 938–946. doi:10.1016/S0025-326X(00)00034-5.

    Article  CAS  Google Scholar 

  • Yoshida, T., Maruyama, T., Kojima, H. I., Allahpichay, I., & Mori, S. (1986). Evaluation of the effect of chemicals on aquatic ecosystem by observing the photosynthetic activity of a macrophyte, Porphyra yezoensis. Aquatic Toxicology (Amsterdam, Netherlands), 9, 207–214. doi:10.1016/0166-445X(86)90009-3.

    CAS  Google Scholar 

Download references

Acknowledgment

The staff of Italian Coast Guard is gratefully acknowledged for the great assistance in field sampling. Moreover, the contribution of Dr. Valeria Ferrara for the map of sampling locations is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Di Landa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Landa, G., Parrella, L., Avagliano, S. et al. Assessment of the Potential Ecological Risks Posed by Antifouling Booster Biocides to the Marine Ecosystem of the Gulf of Napoli (Italy). Water Air Soil Pollut 200, 305–321 (2009). https://doi.org/10.1007/s11270-008-9914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9914-6

Keywords

Navigation