Log in

Design of Reconfigurable FRM Channelizer using Resource Shared Non-maximally Decimated Masking Filters

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents a reconfigurable frequency response masking (FRM) wideband channelizer architecture which is characterized by low computational and hardware complexity. The proposed hardware efficient architecture is realized by incorporating resource shared non-maximally decimated filter bank in the implementation of the FRM wideband channelizer structure. The coefficients of the proposed architecture are optimized and made multiplier-free using Pareto based meta-heuristic algorithm in the canonic signed digit (CSD) space for reducing the total power consumption of the architecture. The architecture is finally designed and synthesized using **linx Vivado and Cadence RTL Encounter compiler for the area and power analysis and is compared with existing channnelizer architectures. The comparison highlights the advantages of the proposed architecture in terms of hardware complexity, power and workload in realizing sharp wideband channel filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mahesh, R., & Vinod, A.P. (2008). Reconfigurable frequency response masking filters for software radio channelization. IEEE Trans. Circuits and Syst. II: Exp. Briefs, 55(3), 274–278. https://doi.org/10.1109/TCSII.2008.918996.

    Article  Google Scholar 

  2. Pun, C.K.S., Chan, S.C., Yeung, K.S., & Ho, K.L. (2002). On the design and implementation of FIR and IIR digital filters with variable frequency characteristics. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 49(11), 689–703.

    Article  Google Scholar 

  3. Oppenheim, A.V. (1999). Discrete-time signal processing Pearson Education India.

  4. Harris, F.J., Farzad, B., Venosa, E., & Chen, X. (2014). Multi-resolution PR NMDFBs for programmable variable bandwidth filter in wideband digital transceivers. In 2014 19th International Conference on Digital Signal Processing, pp. 104–109. https://doi.org/10.1109/ICDSP.2014.6900809.

  5. Mahesh, R., Vinod, A.P., LaiEdmund, M.K., & Omondi, Amos. (2011). Filter bank channelizers for multi-standard software defined radio receivers. Journal of signal processing systems, 62(2), 157–171. https://doi.org/10.1007/s11265-008-0327-y.

    Article  Google Scholar 

  6. Harris, F.J. (2007). Multirate signal processing for communication systems. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  7. Lim, Y. (1986). Frequency-response masking approach for the synthesis of sharp linear phase digital filters. IEEE Trans. Circuits Syst. I, 33(4), 357–364. https://doi.org/10.1109/TCS.1986.1085930.

    Article  Google Scholar 

  8. Chen, X., Harris, F.J., Venosa, E., & Rao, B.D. (2014). Non-maximally decimated analysis/synthesis filter banks: Applications in wideband digital filtering. IEEE Trans. Signal Process, 62(4), 852–867. https://doi.org/10.1109/TSP.2013.2295549.

    Article  MathSciNet  MATH  Google Scholar 

  9. Sudharman, S., Rajan, A.D., & Bindiya, T.S. (2018). Design of a power-efficient low-complexity reconfigurable non-maximally decimated filter bank for high-resolution wideband channels. Circuits Syst. Signal Processing, 38(6), 1–33. https://doi.org/10.1007/s00034-018-0988-0.

    Google Scholar 

  10. Bindiya, T.S., & Elias, E. (2014). Modified metaheuristic algorithms for the optimal design of multiplier-less non-uniform channel filters. Circuits Syst Signal Processing, 33(3), 815–837. https://doi.org/10.5120/9589-4213.

    Article  Google Scholar 

  11. Sakthivel, V., & Elias, E. (2018). Low complexity reconfigurable channelizers using non-uniform filter banks. Computers and Electrical Engineering, 68, 389–403. https://doi.org/10.1016/j.compeleceng.2018.04.015.

    Article  Google Scholar 

  12. Mahesh, R., & Vinod, A.P. (2010). An area-efficient non-uniform filter bank for low overhead reconfiguration of multi-standard software radio channelizers. Journal of Signal Processing Systems, 64(3), 413–428. https://doi.org/10.1007/s11265-010-0502-9.

    Article  Google Scholar 

  13. Haridas, N., & Elias, E. (2017). Reconfigurable farrow structure-based frm filters for wireless communication systems. Circuits Syst Signal Processing, 36 (1), 315–338. https://doi.org/10.1007/s00034-016-0309-4.

    Article  Google Scholar 

  14. Kalathil, S., & Elias, E. (2016). Design of multiplier-less sharp non-uniform cosine modulated filter banks for efficient channelizers in software defined radio. Engineering Science and Technology, an International Journal, 19(1), 147–160. https://doi.org/10.1016/j.jestch.2015.06.003.

    Article  Google Scholar 

  15. Sudharman, S., & Bindiya, T.S. (2018). Design of power efficient variable bandwidth non-maximally decimated frm filters for wideband channelizer. IEEE Trans. on Circuits and Syst II Express Briefs. https://doi.org/10.1109/TCSII.2018.2888897.

  16. Lim, Y.C., Yang, R., Li, D., & Song, J. (1999). Signed power-of-two term allocation scheme for the design of digital filters. In IEEE Trans- actions on Circuits and Systems II: Analog and Digital Signal Processing, vol 46(5), pp 577–584. https://doi.org/10.1109/82.769806.

  17. Dempster, A.G., & Macleod, M.D. (1995). Use of minimum-adder multiplier blocks in FIR digital filters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 42(9), 569–577.

    Article  Google Scholar 

  18. Macleod, M.D., & Dempster, A.G. (2005). Multiplierless FIR filter design algorithms. IEEE Signal Processing Letters, 12(3), 186–189.

    Article  Google Scholar 

  19. Hartley, R.I. (1996). Subexpression sharing in filters using canonic signed digit multipliers. IEEE Trans. on Circuits and Syst. II: Analog and Digital Signal Processing, 43(10), 677–688. https://doi.org/10.1109/82.539000.

    Article  Google Scholar 

  20. Choo, H., Muhammad, K., & Kaushik, R. (2004). Complexity reduction of digital filters using shift inclusive differential coefficients. In IEEE Trans. on Signal Processing, vol 52(6), pp 1760–1772. https://doi.org/10.1109/82.539000.

  21. Zou, W., Zhu, Y., Chen, H., & Shen, H. (2011). A novel multi-objective optimization algorithm based on artificial bee colony. In Proceedings of the 13th annual conference companion on Genetic and evolutionary computation, pp 103–104.

  22. Akbari, R., Hedayatzadeh, R., Ziarati, K., & Hassanizadeh, B. (2012). A multi-objective artificial bee colony algorithm. Swarm and Evolutionary Computation, 2, 39–52.

    Article  Google Scholar 

  23. Siegmund, F., Bernedixen, J., Pehrsson, L., Ng, A.H.C., & Deb, K. (2012). Reference point-based evolutionary multi-objective optimization for industrial systems simulation. In IEEE Proceedings of the Winter Simulation Conference (WSC), pp 1–11.

  24. Bindima, T., & Elias, E. (2017). A novel design and implementation technique for low complexity variable digital filters using multi-objective artificial bee colony optimization and a minimal spanning tree approach. Engineering Applications of Artificial Intelligence, 59, 133–47. https://doi.org/10.1016/j.engappai.2016.12.011.

    Article  Google Scholar 

  25. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T.A.M.T. (2002). A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  26. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T.A.M.T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  27. Lim, Y., & Yang, R. (2005). On the synthesis of very sharp decimators and interpolators using the frequency-response masking technique. IEEE Transactions on Signal Processing, 53(4), 1387–1397. https://doi.org/10.1109/TSP.2005.843743.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhi Sudharman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudharman, S., Bindiya, T.S. Design of Reconfigurable FRM Channelizer using Resource Shared Non-maximally Decimated Masking Filters. J Sign Process Syst 93, 913–922 (2021). https://doi.org/10.1007/s11265-020-01615-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-020-01615-1

Keywords

Navigation