Log in

Evidence that PTB does not stimulate HCV IRES-driven translation

  • Original Article
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

It is now well established that Hepatitis C Virus (HCV) translation is driven by an Internal Ribosome Entry Site (IRES) resulting in cap-independent translation. Such a mechanism usually occurs with the help of IRES Associated Factors (ITAFs). Moreover, an important translational feature is likely conserved from the model of classical mRNA circularisation (5′-3′ cross-talk), involving the HCV RNA highly structured 3′ extremity called the 3′X region. This could bind several cellular factors and modulate the translation efficacy, at least in Rabbit Reticulocyte Lysate (RRL). In particular, polypyrimidine-binding proteins have been proposed to be potential HCV ITAFs, such as Polypyrimidine Tract Binding protein (PTB). However, contradictions still exist as to the role of PTB: its ability to bind both the HCV IRES and the 3′X region leads to the hypothesis that it could positively modulate IRES-driven translation in the presence of the X structure. Results of translational and PTB-binding studies of X mutant sequences led us to discredit PTB as protagonist of 3′X region stimulation on HCV IRES-driven translation. Moreover, competition assays of X RNA in trans on IRES-driven translation demonstrate the involvement of at least two stimulating factors and led to the conclusion that this mechanism is more complex than initially thought. Although we did not identify these factors, it is no longer doubtful that there is effectively a stimulating functional interaction between the HCV IRES and the 3′X region in RRL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I.M.T. Saito, A. Ohbayashi, H. Harada, T. Katayama, S. Kikuchi, Y. Watanabe, S. Koi, MYO Onji, Q.L. Choo, M. Houghton, G. Kuo, Proc. Natl. Acad. Sci. USA 87, 6547–6549 (1990)

    Article  PubMed  CAS  Google Scholar 

  2. J.H. Hoofnagle, Hepatology 36(5 Suppl 1), S21–S29 (2002)

    Article  PubMed  Google Scholar 

  3. K. Tsukiyama-Kohara, N. Iizuka, M. Kohara, A. Nomoto, J. Virol. 66(3), 1476–1483 (1992)

    PubMed  CAS  Google Scholar 

  4. C. Wang, P. Sarnow, A. Siddiqui, J. Virol. 67(6), 3338–3344 (1993)

    PubMed  CAS  Google Scholar 

  5. J.E. Reynolds, A. Kaminski, H.J. Kettinen, K. Grace, B.E. Clarke, A.R. Carroll, D.J. Rowlands, R.J. Jackson, EMBO. J. 14(23), 6010–6020 (1995)

    PubMed  CAS  Google Scholar 

  6. A.A. Kolykhalov, S.M. Feinstone, C.M. Rice, J. Virol. 70(6), 3363–3371 (1996)

    PubMed  CAS  Google Scholar 

  7. T. Tanaka, N. Kato, M.J. Cho, K. Sugiyama, K. Shimotohno, J. Virol. 70(5), 3307–3312 (1996)

    PubMed  CAS  Google Scholar 

  8. P. Friebe, R. Bartenschlager, J. Virol. 76(11), 5326–5338 (2002)

    Article  PubMed  CAS  Google Scholar 

  9. A.V. Komarova, M. Brocard, K.M. Kean, Prog. Nucleic Acid Res. Mol. Biol. 81, 331–367 (2006)

    PubMed  Google Scholar 

  10. T.V. Pestova, I.N. Shatsky, S.P. Fletcher, R.J. Jackson, C.U. Hellen, Genes. Dev. 12(1), 67–83 (1998)

    PubMed  CAS  Google Scholar 

  11. D.V. Sizova, V.G. Kolupaeva, T.V. Pestova, I.N. Shatsky, C.U. Hellen, J. Virol 72(6), 4775–4782 (1998)

    PubMed  CAS  Google Scholar 

  12. T. Ito, M.M. Lai, Virology 254(2), 288–296 (1999)

    Article  PubMed  CAS  Google Scholar 

  13. J.J. Tischendorf, C. Beger, M. Korf, M.P. Manns, M. Kruger, Arch. Virol. 149(10), 1955–1970 (2004)

    PubMed  CAS  Google Scholar 

  14. J.G. Patton, S.A. Mayer, P. Tempst, B. Nadal-Girard, Genes Dev. 5(7), 1237–1251 (1991)

    Google Scholar 

  15. N. Ali, A. Siddiqui, J. Virol. 69(10), 6367–6375 (1995)

    PubMed  CAS  Google Scholar 

  16. I. Perez, C.H. Lin, J.G. McAfee, J.G. Patton, RNA 3(7), 764–778 (1997)

    PubMed  CAS  Google Scholar 

  17. C. Alfano, D. Sanfelice, J. Babon, G. Kelly, A. Jacks, S. Curry, M.R. Conte, Nat. Struct. Mol. Biol. 11(4), 323–329 (2004)

    Google Scholar 

  18. N. Ali, A. Siddiqui, Proc. Natl. Acad. Sci. USA 94(6), 2249–2254 (1997)

    Article  PubMed  CAS  Google Scholar 

  19. M. Costa-Mattioli, Y. Svitkin, N. Sonenberg, Mol. Cell. Biol. 24(15), 6861–6870 (2004)

    Article  PubMed  CAS  Google Scholar 

  20. T. Ito, S.M. Tahara, M.M. Lai, J. Virol. 72(11), 8789–8796 (1998)

    PubMed  CAS  Google Scholar 

  21. Y.M. Michel, A.M. Borman, S. Paulous, K.M. Kean, Mol. Cell. Biol. 21(13), 4097–4109 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. T.A. Kunkel, Proc. Natl. Acad. Sci. USA 82(2), 488–492 (1985)

    Google Scholar 

  23. A.V. Komarova, E. Real, A.M. Borman, M. Brocard, T. Rambaud, N. Tordo, J.W.B. Hershey, K.M. Kean, Y. Jacob Submitted to Nucleic Acids Res.

  24. A.M. Borman, Y.M. Michel, K.M. Kean, Nucleic Acids Res. 28(21), 4068–4075 (2000)

    Article  PubMed  CAS  Google Scholar 

  25. A. Kaminski, S.L. Hunt, J.G. Patton, R.J. Jackson, RNA 1(9), 924–938 (1995)

    PubMed  CAS  Google Scholar 

  26. A.M. Borman, R.J. Jackson, Virology 188(2), 685–696 (1992)

    Article  PubMed  CAS  Google Scholar 

  27. J.S. Kieft, K. Zhou, R. Jubin, J.A. Doudna, RNA 7(2), 194–206 (2001)

    Article  PubMed  CAS  Google Scholar 

  28. A. Jacobson, M. Favreau, Nucleic Acids Res. 11(18), 6353–6368 (1983)

    Article  PubMed  CAS  Google Scholar 

  29. K. Spangberg, L. Wiklund, S. Schwartz, Virology 274(2), 378–390 (2000)

    Article  PubMed  CAS  Google Scholar 

  30. C. Clerte, K.B. Hall, RNA 12(3), 457–475 (2006)

    Article  PubMed  CAS  Google Scholar 

  31. K. Murakami, M. Abe, T. Kageyama, N. Kamoshita, A. Nomoto, Arch. Virol. 146(4), 729–741 (2001)

    Article  PubMed  CAS  Google Scholar 

  32. L.K. Kong, P. Sarnow, J. Virol. 76(24), 12457–12462 (2002)

    Article  PubMed  CAS  Google Scholar 

  33. S.S. Bradrick, R.W. Walters, M. Gromeier, Nucleic Acids Res. 34(4), 1293–1303 (2006)

    Article  PubMed  CAS  Google Scholar 

  34. Y. Yu, H. Ji, J.A. Doudna, J.A. Leary, Protein Sci. 14(6), 1438–1446 (2005)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Andrew M. Borman for critical reading of the manuscript; to Stephen Curry for the gift of recombinant PTB and appropriate anti-serum; to Andrew M. Borman and the students of the Institute Pasteur DEA course for help with the construction of X mutants. This work was supported in part by a grant from the Inserm ACI-hépatites and in part by funding from the ANRS. M. Brocard was the recipient of a pre-doctoral fellowship from the ANRS and A.V. Komarova of a postdoctoral fellowship from the FRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle Brocard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brocard, M., Paulous, S., Komarova, A.V. et al. Evidence that PTB does not stimulate HCV IRES-driven translation. Virus Genes 35, 5–15 (2007). https://doi.org/10.1007/s11262-006-0038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-006-0038-z

Keywords

Navigation