Log in

Experimental Investigation of Hydrocarbon Contamination at the Head–Disk Interface

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Hydrocarbon oil contamination of the head–disk interface is investigated. Optical surface analysis, atomic force microscopy, and contact angle measurements are used to study the adsorption characteristics of hydrocarbon contaminants on the disk surface. Optical microscopy, scanning electron microcopy, energy-dispersive X-ray spectroscopy, and time-of-flight secondary ion mass spectrometry are used to investigate hydrocarbon contamination at the head–disk interface. Temperature and time were found to significantly influence hydrocarbon contamination. The results agree well with molecular dynamics simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

U :

Potential energy for non-bond or bond interactions

ε :

Potential well depth

σ :

Atom/bead diameter

r :

Distance between interacting atoms/beads

r c :

Cutoff distance

K L :

Linear harmonic coefficient

r o :

Equilibrium bond length

K θ :

Angular harmonic coefficient

θ o :

Equilibrium bond angle

k 1 :

Dihedral bond coefficient 1

k 2 :

Dihedral bond coefficient 2

k 3 :

Dihedral bond coefficient 3

φ :

Equilibrium dihedral bond angle

ε w :

Potential well depth for wall–atom interaction

σ w :

Atom/bead diameter considering the effect of wall

z :

Distance between atom and wall

z c :

Cutoff distance for wall–atom interaction

References

  1. Stupak Jr, J.J., Chao, G.H., Moe, E., Mayberry, K.W.: Disk Drive Spindle Motor. U.S. Patent No. 5,373,407. 13 Dec 1994

  2. Dauber, E.G., Bailey, C.E., Sassa, R.L.: Adsorbent Assembly for Removing Gaseous Contaminants. U.S. Patent No. 5,593,482. 14 Jan 1997

  3. Beecroft, H.: Filter System for Type II HDD. U.S. Patent No. 5,406,431. 11 Apr 1995

  4. Elerath, J.G., Pecht, M.: Enhanced reliability modeling of RAID storage systems. In: 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, 2007. DSN’07. IEEE (2007)

  5. Smith, G.J.: Contamination Control on Actuator Arms in a Disk Drive. U.S. Patent No. 6,665,150. 16 Dec 2003

  6. Jesh, M.S., Segar, P.R.: The effect of vapor phase chemicals on head/disk interface tribology. Tribol. Trans. 42(2), 310–316 (1999)

    Article  Google Scholar 

  7. Gao, C., Dai, P., Vu, V.: Flying stiction, lubricant pick-up and carbon-overcoat wear of magnetic heads. J. Tribol. 121(1), 97–101 (1999)

    Article  Google Scholar 

  8. Matsuoka, K., Obata, S., Kita, H., Toujou, F.: Development of FDB spindle motors for HDD use. IEEE Trans. Magn. 37(2), 783–788 (2001)

    Article  Google Scholar 

  9. Fowler, D.E., Geiss, R.H., Eldridge, D., Schreck, E.: Observation of slider droplet formation during fly stiction tests with a real time visualization instrument. IEEE Trans. Magn. 35(5), 2409–2411 (1999)

    Article  Google Scholar 

  10. Akamatsu, N., Ohtani, T.: Study of the adsorption of siloxane and hydrocarbon contaminants onto the surfaces at the head/disk interface of a hard disk drive by thermal desorption spectroscopy. Tribol. Lett. 13(1), 15–20 (2002)

    Article  Google Scholar 

  11. Raman, V., Nguyen, T., Escobar J.: Reliability enhancements in hard disk drives using in situ vapor phase additives. In: 40th Leeds-Lyon Symposium on Tribology & Tribochemistry Forum 2013. Oral presentation (2013)

  12. Sonoda, K.: Flying instability due to organic compounds in hard disk drive. Adv. Tribol. 2012, 170189 (2012). doi:10.1155/2012/170189

  13. Kasai, P.H., Raman, V.: Hydrocarbon transfer in disk drives. In: ASME 2014 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers (2014)

  14. Seo, Y.W., Ovcharenko, A., Talke, F.E.: Simulation of hydrocarbon oil contamination at the head–disk interface using molecular dynamics. Tribol. Lett. 61(3), 1–10 (2016)

    Article  Google Scholar 

  15. Marchon, B., Karis, T., Dai, Q., Pit, R.: A model for lubricant flow from disk to slider. IEEE Trans. Magn. 39(5), 2447–2449 (2003)

    Article  Google Scholar 

  16. Guo, X.C., Raman, V., Karis, T.E., Yao, Y.Z.: Flyability failures due to siloxanes at the head–disk interface revisited. IEEE Trans. Magn. 43(6), 2223–2225 (2007)

    Article  Google Scholar 

  17. Schmidt, R., Griesbaum, K., Behr, A., Biedenkapp, D., Voges, H.-W., Garbe, D., Paetz, C., Collin, G., Mayer, D., Höke, H.: Hydrocarbons. In: Bohnet, M., et. al. (ed.) Ullmann’s Encyclopedia of Industrial Chemistry, pp. 1–74. Wiley-VC (2014)

  18. Haynes, W.M. (ed.): CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2014)

    Google Scholar 

  19. Nozaki, K., Saihara, R., Ishikawa, K., Yamamoto, T.: Structure of normal alkane evaporated films: molecular orientation. Jpn. J. Appl. Phys. 46(2R), 761 (2007)

    Article  Google Scholar 

  20. Tanaka, K., Ishikawa, K., Nozaki, K., Urakami, N., Yamamoto, T.: Structures of multilayered thin films of long-chain molecules: X-ray scattering study. Polym. J. 40(10), 1017–1024 (2008)

    Article  Google Scholar 

  21. Vollhardt, K.P.C., Schore, N.E.: Organic Chemistry: Structure and Function. Macmillan, London (2007)

    Google Scholar 

  22. Stalder, A.F., Kulik, G., Sage, D., Barbieri, L., Hoffmann, P.: A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf. A Physicochem. Eng. Asp. 286(1), 92–103 (2006)

    Article  Google Scholar 

  23. Taylor, M., Urquhart, A.J., Zelzer, M., Davies, M.C., Alexander, M.R.: Picoliter water contact angle measurement on polymers. Langmuir 23(13), 6875–6878 (2007)

    Article  Google Scholar 

  24. Chirico, R.D., An, N., Steele, W.V., Strube, M.M., Tsonopoulos, C.: The vapor pressure of n-alkanes revisited. New high-precision vapor pressure data on n-decane, n-eicosane, and n-octacosane. J. Chem. Eng. Data 34(2), 149–156 (1989)

    Article  Google Scholar 

  25. Morgan, D.L., Kobayashi, R.: Direct vapor pressure measurements of ten n-alkanes m the 10-C 28 range. Fluid Phase Equilib. 97, 211–242 (1994)

    Article  Google Scholar 

  26. Paserba, K.R., Gellman, A.J.: Kinetics and energetics of oligomer desorption from surfaces. Phys. Rev. Lett. 86(19), 4338 (2001)

    Article  Google Scholar 

  27. Gellman, A.J., Paserba, K.R.: Kinetics and mechanism of oligomer desorption from surfaces: n-alkanes on graphite. J. Phys. Chem. B 106(51), 13231–13241 (2002)

    Article  Google Scholar 

  28. Paul, W., Yoon, D.Y., Smith, G.D.: An optimized united atom model for simulations of polymethylene melts. J. Chem. Phys. 103(4), 1702–1709 (1995)

    Article  Google Scholar 

  29. Shimizu, T., Yamamoto, T.: Melting and crystallization in thin film of n-alkanes: a molecular dynamics simulation. J. Chem. Phys. 113(8), 3351–3359 (2000)

    Article  Google Scholar 

  30. Waheed, N., Lavine, M.S., Rutledge, G.C.: Molecular simulation of crystal growth in n-eicosane. J. Chem. Phys. 116(5), 2301–2309 (2002)

    Article  Google Scholar 

  31. Waheed, N., Ko, M.J., Rutledge, G.C.: Molecular simulation of crystal growth in long alkanes. Polymer 46(20), 8689–8702 (2005)

    Article  Google Scholar 

  32. Yamamoto, T., Nozaki, K., Yamaguchi, A., Urakami, N.: Molecular simulation of crystallization in n-alkane ultrathin films: effects of film thickness and substrate attraction. J. Chem. Phys. 127(15), 154704 (2007)

    Article  Google Scholar 

  33. Anwar, M., Turci, F., Schilling, T.: Crystallization mechanism in melts of short n-alkane chains. J. Chem. Phys. 139(21), 214904 (2013)

    Article  Google Scholar 

  34. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Western Digital Corporation for an internship provided to Young Woo Seo and for allowing the use of their facilities to perform a number of the tests reported in this study. Also, we would like to acknowledge Dr. Raj Thangaraj, Dr. Jih-** Peng, Dr. Min Yang, and Dr. Joe Hanke for their insights and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Woo Seo.

Appendix: Hydrocarbon Crystallization Molecular Dynamics Simulation

Appendix: Hydrocarbon Crystallization Molecular Dynamics Simulation

In the molecular dynamics simulation presented in this work, the so-called united atom model (UAM) was used to simulate the crystallization of linear hydrocarbon chains shown in Sect. 2.2.

As shown in Fig. 18, the UAM approach models CH2 and CH3 as beads in order to reduce computational cost while accurately reproducing thermodynamic properties of linear hydrocarbon chains [28]. Using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [34] and appropriate potential functions and corresponding parameters [2833], we were able to simulate the crystallization of linear hydrocarbon chains.

Fig. 18
figure 18

Schematic of “united atom model” of a linear hydrocarbon chain

For non-bonded interactions, we used the Lennard–Jones potential function given by

$$U_{\text{LJ}} = 4\varepsilon \left[ {\left( {\frac{\sigma }{r}} \right)^{12} - \left( {\frac{\sigma }{r}} \right)^{6} } \right],\quad r < r_{\text{c}}$$
(2)

where ε is 0.112 kcal/mol, σ = 4.5 Å, and r c = 12 Å. The bond interaction was described as linear harmonic potential function given by

$$U_{\text{Bond}} = K_{\text{L}} \left( {r - r_{o} } \right)^{2}$$
(3)

where K L = 350 kcal/mol Å2 and r o  = 1.53 Å. The angular bond interaction for linear hydrocarbon chains was simulated by the following potential function:

$$U_{\text{Angle}} = K_{\theta } \left( {\theta - \theta_{o} } \right)^{2}$$
(4)

where K θ  = 60 kcal/mol rad2 and θ o  = 109.5°, or 1.91 rad. The dihedral bond interaction for the molecules was given by

$$U_{\text{Dihedral}} = \frac{1}{2}k_{1} (1 - \cos \varphi ) + \frac{1}{2}k_{2} (1 - \cos 2\varphi ) + \frac{1}{2}k_{3} (1 - \cos 3\varphi )$$
(5)

where k 1 = 1.6 kcal/mol, k 2 = 0.867 kcal/mol, and k 3 = 3.24 kcal/mol. Lastly, for the wall–atom interaction was modeled using the following potential function:

$$U_{{{\text{Wall}} {-} {Atom}}} = 2\pi \varepsilon_{w} \left[ {\frac{2}{5}\left( {\frac{{\sigma_{w} }}{z}} \right)^{10} - \left( {\frac{\sigma }{z}} \right)^{4} - \frac{{\sqrt 2 \sigma^{3} }}{{3\left( {z + \left( {0.61/\sqrt 2 } \right)\sigma } \right)^{3} }}} \right],\quad z < z_{c}$$
(6)

where ε w = 1.0 kcal/mol, σ w = 3.8 Å, and z c = 9.5 Å.

The linear hydrocarbon chains were first positioned as shown in Fig. 8a. Then, we imported the position data and applied the above potential functions in LAMMPS [2834]. The MD simulation was first carried out in the canonical (NVT) ensemble with a time step size Δt = 2 fs. An NVT ensemble is a thermo-statistical system in which the number of atoms (N), the volume of the simulation box (V), and the temperature (T) are kept constant. With the NVT ensemble, we randomly distributed the linear hydrocarbon chains for 100,000 time steps (Fig. 8b). The system was then equilibrated at 450 K for a total of 600,000 time steps. Thereafter, we used the microcanonical ensemble (NVE) and the Langevin thermostat to quench the equilibrated system of linear hydrocarbon chains to 290 K for 1,000,000 time steps, at a cooling rate of \(1.5 \times 10^{11} \,{\text{K}}/{\text{s}}\). The system was then equilibrated at 300 K for 50,000,000 time steps in order to grow crystals of linear hydrocarbon chains as shown in Fig. 8c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, Y.W., Ovcharenko, A., Bilich, D. et al. Experimental Investigation of Hydrocarbon Contamination at the Head–Disk Interface. Tribol Lett 65, 54 (2017). https://doi.org/10.1007/s11249-017-0835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0835-7

Keywords

Navigation