Log in

Non-corrosive and Biomaterials Protic Ionic Liquids with High Lubricating Performance

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Achieving non-corrosive and green ionic liquids is a big challenge for the tribologist. A kind of biomaterials-based protic ionic liquids (PILs) was synthesized in this paper. Rapeseed oil, group 1 mineral oil and one commercially available fully formulated gear oil were as used reference to study the property of the synthesized PILs. The copper strip standard corrosion test was employed to study the anti-corrosion property. The boundary lubrication and elastohydrodynamic lubrication performance of the lubricants was studied on an Optimol SRV-III oscillating friction and wear tester, and a WAM (model 11) ball-on-disk test rig, respectively. The lubricating mechanism of the synthesized PILs was also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)

    Article  Google Scholar 

  2. Ye, C., Liu, W.M., Chen, Y., Yu, L.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Commun. 21, 2244–2245 (2001)

    Article  Google Scholar 

  3. Palacio, M., Bhushan, B.: A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 40, 247–268 (2010)

    Article  Google Scholar 

  4. Perkin, S., Albrecht, T., Klein, J.: Layering and shear properties of an ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces. Phys. Chem. Chem. Phys. 12, 1243–1247 (2010)

    Article  Google Scholar 

  5. Greaves, T.L., Weerawardena, A., Fong, C., Drummond, C.J.: Formation of amphiphile self-assembly phases in protic ionic liquids. J. Phys. Chem. B 111, 4082–4088 (2007)

    Article  Google Scholar 

  6. Chen, Q.L., Wu, K.J., He, C.H.: Thermal conductivity of ionic liquids at atmospheric pressure: database, analysis, and prediction using a topological index method. Ind. Eng. Chem. Res. 53, 7224–7232 (2014)

    Article  Google Scholar 

  7. Lin, P.Y., Soriano, A.N., Leron, R.B., Li, M.H.: Electrolytic conductivity and molar heat capacity of two aqueous solutions of ionic liquids at room-temperature: measurements and correlations. J. Chem. Thermodyn. 42, 994–998 (2010)

    Article  Google Scholar 

  8. Endres, F., El Abedin, S.Z.: Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys. 8, 2101–2116 (2006)

    Article  Google Scholar 

  9. Greaves, T.L., Weerawardena, A., Krodkiewska, I., Drummond, C.J.: Protic ionic liquids: physicochemical properties and behavior as amphiphile self-assembly solvents. J. Phys. Chem. B 112, 896–905 (2008)

    Article  Google Scholar 

  10. Walden, P.: Molecular weights and electrical conductivity of several fused salts. Bulletin de l’Academie Imperiale des Sciences de St. Petersburg, pp. 405–422 (1914)

  11. Greaves, T.L., Drummond, C.J.: Protic ionic liquids: properties and applications. Chem. Rev. 108, 206–237 (2008)

    Article  Google Scholar 

  12. Atkin, R., Warr, G.G.: Self-assembly of a nonionic surfactant at the graphite/ionic liquid interface. J. Am. Chem. Soc. 127, 11940–11941 (2005)

    Article  Google Scholar 

  13. Araos, M.U., Warr, G.G.: Self-assembly of nonionic surfactants into lyotropic liquid crystals in ethylammonium nitrate, a room-temperature ionic liquid. J. Phys. Chem. B 109, 14275–14277 (2005)

    Article  Google Scholar 

  14. Sharma, Y.O., Degani, M.S.: CO2 absorbing cost-effective ionic liquid for synthesis of commercially important alpha cyanoacrylic acids: a safe process for activation of cyanoacetic acid. Green Chem. 11, 526–530 (2009)

    Article  Google Scholar 

  15. Pernak, J., Goc, I., Mirska, I.: Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem. 6, 323–329 (2004)

    Article  Google Scholar 

  16. Susan, MdABH, Noda, A., Mitsushima, S., Watanabe, M.: Brønsted acid–base ionic liquids and their use as new materials for anhydrous proton conductors. Chem. Commun. 8, 938–939 (2003)

    Article  Google Scholar 

  17. Kondo, H.: Protic ionic liquids with ammonium salts as lubricants for magnetic thin film media. Tribol. Lett. 31, 211–218 (2008)

    Article  Google Scholar 

  18. Zhao, Q., Zhao, G., Zhang, M., Wang, X., Liu, W.: Tribological behavior of protic ionic liquids with dodecylamine salts of dialkyldithiocarbamate as additives in lithium complex grease. Tribol. Lett. 48, 133–144 (2012)

    Article  Google Scholar 

  19. Espinosa, T., Sanes, J., Jimenez, A.E., Bermudez, M.D.: Surface interactions, corrosion processes and lubricating performance of protic and aprotic ionic liquids with OFHC copper. Appl. Surf. Sci. 273, 578–597 (2013)

    Article  Google Scholar 

  20. Espinosa, T., Sanes, J., Jimenez, A.E., Bermudez, M.D.: Protic ammonium carboxylate ionic liquid lubricants of OFHC copper. Wear 303, 495–509 (2013)

    Article  Google Scholar 

  21. Espinosa, T., Jimenez, M., Sanes, J., Jimenez, A.E., Iglesias, M., Bermudez, M.D.: Ultra-low friction with a protic ionic liquid boundary film at the water-lubricated sapphire–stainless steel interface. Tribol. Lett. 53, 1–9 (2014)

    Article  Google Scholar 

  22. Petkovic, M., Seddon, K.R., Rebelo, L.P.N., Pereira, C.S.: Ionic liquids: a pathway to environmental acceptability. Chem. Soc. Rev. 40, 1383–1403 (2011)

    Article  Google Scholar 

  23. Fukaya, Y., Iizuka, Y., Sekikawa, K., Ohno, H.: Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem. 9, 1155–1157 (2007)

    Article  Google Scholar 

  24. Petkovic, M., Ferguson, J.L., Gunaratne, H.Q.N., Ferreira, R., Leitao, M.C., Seddon, K.R., Rebelo, L.P.N., Pereira, C.S.: Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chem. 12, 643–649 (2010)

    Article  Google Scholar 

  25. Swatloski, R.P., Holbrey, J.D., Rogers, R.D.: Ionic liquids are not always so green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 5, 361–363 (2003)

    Article  Google Scholar 

  26. Wamser, C.A.: Hydrolysis of fluoboric acid in aqueous solution. J. Am. Chem. Soc. 70, 1209–1215 (1948)

    Article  Google Scholar 

  27. Cota, I., González-Olmos, R., Iglesias, M., Medina, F.: New short aliphatic chain ionic liquids: synthesis, physical properties, and catalytic activity in aldol condensations. J. Phys. Chem. B 111, 12468–12477 (2007)

    Article  Google Scholar 

  28. Álvarez, V.H., Dosil, N., Gonzalez-Cabaleiro, R., Mattedi, S., Martin-Pastor, M., Iglesias, M., Navaza, J.M.: Brønsted ionic liquids for sustainable processes: synthesis and physical properties. J. Chem. Eng. Data 55, 625–632 (2010)

    Article  Google Scholar 

  29. Bjorling, M., Larsson, R., Marklund, P., Kassfeldt, E.: EHL friction map**: the influence of lubricant, roughness, speed and slide to roll ratio. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 225, 671–681 (2011)

    Article  Google Scholar 

  30. Haushalter, K.A., Lau, J., Roberts, J.D.: An NMR investigation of the effect of hydrogen bonding on the rates of rotation about the C–N bonds in urea and thiourea. J. Am. Chem. Soc. 118(37), 8891–8896 (1996)

    Article  Google Scholar 

  31. Bjorling, M., Habchi, W., Bair, S., Larsson, R., Marklund, P.: Friction reduction in elastohydrodynamic contacts by thin-layer thermal insulation. Tribol. Lett. 53, 477–486 (2014)

    Article  Google Scholar 

  32. Mu, L.W., Shi, Y.J., Ji, T., Chen, L., Yuan, R.X., Wang, H.Y., Zhu, J.H.: Ionic grease lubricants: protic [Triethanolamine][Oleic acid] and aprotic [Choline][Oleic acid]. ACS Appl. Mater. Interfaces 8, 4977–4984 (2016)

    Article  Google Scholar 

  33. Song, Z.H., Liang, Y.M., Fan, M.J., Zhou, F., Liu, W.M.: Ionic liquids from amino acids: fully green fluid lubricants for various surface contacts. RSC Adv. 4, 19396–19402 (2014)

    Article  Google Scholar 

  34. Mu, L.W., Shi, Y.J., Guo, X.J., Ji, T., Chen, L., Yuan, R.X., Brisbin, L., Wang, H.Y., Zhu, J.H.: Non-corrosive green lubricants: strengthened lignin–[choline][amino acid] ionic liquids interaction via reciprocal hydrogen bonding. RSC Adv. 5, 66067–66072 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of Kempe foundation, Sweden (JCK-1507) and the Chinese State Key Laboratory of Materials-Oriented Chemical Engineering (KL15-03). The authors also want to appreciate a lot for the NMR characterization by Dr. Liwen Mu and Assoc. Prof. Jiahua Zhu from Department of Chemical and Biomolecular Engineering, The University of Akron, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Larsson, R. Non-corrosive and Biomaterials Protic Ionic Liquids with High Lubricating Performance. Tribol Lett 63, 1 (2016). https://doi.org/10.1007/s11249-016-0692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0692-9

Keywords

Navigation