Log in

EHL simulation using the free-volume viscosity model

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The free-volume viscosity model can accurately predict the temperature–pressure–viscosity relationship of lubricants. However, it is seldom used in elastohydrodynamic lubrication (EHL) simulation. This paper presents the application of the free-volume viscosity model in a Newtonian EHL simulation of a squalane-lubricated circular contact. Good agreement is observed between available experimental data and simulation results. The pressure–viscosity coefficients fit from viscometer data are also discussed. A recently developed definition of the coefficient is used to compare the coefficient value extracted from EHL film thickness interference measurements. Results indicate that the coefficient values from the curve fitting and EHL film thickness extraction agree well which has not been previously observed. Two factors help achieve this agreement: the new coefficient definition and smaller prediction error when using the Hamrock–Dowson formula in the cases studied. The effects of different pressure–viscosity relationships, including the exponential model, the Roelands model and the free-volume model, are investigated through an example with bright stock mineral oil. It is found that the real pressure–viscosity behavior predicted by the free-volume model yields a higher viscosity at the low-pressure area which results in a larger central film thickness. Therefore, due to use of the free-volume model, the present results are more consistent with experimental observations than previously reported numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

Abbreviations

a :

Hertzian contact radii, (m)

A 1, A 2 :

Yasutomi parameters

b :

Intercept of the straight line in the coordinate of Log(h cen) vs. Log(u) in equation (14)

B :

Doolittle parameter

B 1, B 2 :

Yasutomi parameters

c :

Constant in equations (15) and (16)

C E :

Coefficients for elastic deformation in the film thickness equation, \(C_{\rm E}=\frac{2p_{\rm h}}/({\pi{E}^{\prime}})\)

C G :

Coefficients for geometry term in the film thickness equation, \(C_{\rm G}=\frac{a}/({2R})\)

c a , c b :

Coefficients for pressure–density equation, c a  = 0.6 ×  10−9, c b  = 1.7 ×  10−9

C a , C b :

Dimensionless coefficients for pressure–density equation, C a  = c a p h, C b  = c b p h

C 1, C 2 :

Yasutomi parameters

E 1, E 2 :

Young’s modulus of two surfaces, (Pa)

E′:

Reduced Young’s modulus of two surfaces, \(1/E^{\prime}=((1-\mu_1^2)/E_1+(1-\mu_2^2)/E_2)/2\), (Pa)

F :

Relative free-volume expansivity

G * :

Dimensionless material parameter, G * = α E

h, H :

Film thickness, (m), and its dimensionless value, H = h/a

h 0, H 0 :

Normal approach of two surfaces, (m), and its dimensionless value, H 0 = h 0/a

h cen, h min :

Central film thickness and minimum film thickness, (nm)

K 0 :

Bulk modulus at p = 0, (GPa)

K 0 :

Pressure rate of change of bulk modulus at p = 0

p :

Pressure, (Pa)

p iv(∞):

Asymptotic isoviscous pressure, (Pa)

p iv(p):

Isoviscous pressure, (Pa)

p h :

Maximum Hertzian pressure, (Pa)

P :

Dimensionless pressure, P = p/p h

R :

Ball radii

T :

Temperature, (°C)

T g :

Glass transition temperature, (°C)

\(T_{\rm g_{0}}\) :

Glass transition temperature for p = 0, (°C)

u 1, u 2 :

Velocities of two surfaces, (m/s)

u :

Entrainment velocity, u = (u 1 + u 2)/2, (m/s)

U * :

Dimensionless speed parameter, U * = uη0/(ER)

v :

Volume, (m3)

v 0 :

Volume at ambient pressure or p = 0, (m3)

v occ :

Occupied volume, (m3)

V(X, Y):

Dimensionless elastic deformation, see equations (2) and (3)

w :

Load, (N)

W * :

Dimensionless load parameter, W * = w/(ER 2)

x, y :

Coordinates, (m)

X, Y :

Dimensionless coordinates X = x/a,Y = y/a

Z :

Roelands pressure–viscosity exponential

α:

Pressure–viscosity coefficient, (1/Pa)

α0 :

Conventional pressure–viscosity coefficient, (1/Pa)

α* :

Reciprocal asymptotic isoviscous pressure coefficient, (1/Pa)

αB :

Secant pressure–viscosity coefficient, (1/Pa)

αfilm :

New definition of pressure–viscosity coefficient, (1/Pa)

αexp :

Pressure–viscosity coefficient extracted from film thickness measurement, (1/Pa)

αf :

Thermal expansion coefficient, (1/°C)

ΔX, ΔY :

Dimensionless mesh spacing in x- and y- directions

\(\varepsilon\) :

Dimensionless coefficients for Poiseuille flow

η:

Viscosity, (Pa·s)

η0 :

Viscosity at ambient pressure, (Pa·s)

ηg :

Glass transition viscosity, (Pa·s)

\(\bar{\eta}\) :

Dimensionless viscosity, \(\bar{\eta}=\eta/\eta_{0}\)

μ1, μ2 :

Poisson ratios of two surfaces

ρ:

Density of lubricant, (kg/m3)

ρ0 :

Density at ambient pressure, (kg/m3)

\(\bar{\rho}\) :

Dimensionless density, \(\bar{\rho}=\rho/\rho_{0}\)

Ω:

Solution domain

References

  1. Barus C. (1983) Am. J. Sci. 45:87

    Google Scholar 

  2. C.J.A. Roelands, Correlational Aspects of the Viscosity–Temperature–Pressure Relationship of Lubricating Oils, PhD thesis (Delft University, Delft, 1996)

  3. Bair S. (2002) Proc. Instn. Mech. Engrs. 216(J) :223

    Google Scholar 

  4. Bair S. (2004) Proc. Instn. Mech. Engrs. 218(J1) :57

    Google Scholar 

  5. Doolittle A.D. (1951) J. Appl. Phys. 22(12) :1471

    Article  CAS  Google Scholar 

  6. Williams M.L., Landel R.F., Ferry J.D. (1955) J. Am. Chem. Soc. 77:3701

    Article  CAS  Google Scholar 

  7. Yasutomi S., Bair S., Winer W.O. (1984) ASME J. Lubr. Techn. 106(2):291

    CAS  Google Scholar 

  8. Cook R.L., Herbst C.A., King H.E. Jr. (1993) J. Phys. Chem. 97:2355

    Article  CAS  Google Scholar 

  9. Bair S. (2001) ASME J. Tribol. 123(1) :50

    Article  CAS  Google Scholar 

  10. Ehret P., Dowson D., Taylor C.M. (1998) Proc. Roy. Soc. London A 454:763

    Article  CAS  Google Scholar 

  11. Kaneta M., Nishikawa H., Kameishi K. et al. (1992) ASME J. Tribol. 114:75

    CAS  Google Scholar 

  12. Jacob B., Venner C.H., Lugt P.M. (2003) ASME J. Tribol. 125(4):739

    Article  Google Scholar 

  13. S. Bair, Y.C. Liu and Q.J. Wang, ASME J. Tribol. 128(3) (2006) 624

    Article  Google Scholar 

  14. Yang P., Kaneta M., Masuda S. (2005) ASME J. Tribol. 127(2):457

    Article  Google Scholar 

  15. Bair S. (2005) ASME J. Tribol. 127(2) :458

    Article  Google Scholar 

  16. Hartl M., Molimard J., Krupka I. et al. (2001) STLE Tribol. Trans. 44(2):270

    Article  CAS  Google Scholar 

  17. M. Kaneta, N. Tani and H. Nishikawa, in: Tribological Research and Design for Engineering System, eds. D. Dowson et al. (Elsevier, 2003) 101

  18. Hu Y.Z., Zhu D. (2000) ASME J. Tribol. 122(1) :1

    Article  Google Scholar 

  19. Liu S.J., Wang Q.J., Liu G. (2000) Wear 243(1–2) :101

    Article  CAS  Google Scholar 

  20. Wang W.Z., Liu Y.C., Hu Y.Z., Wang H. (2004) ASME J. Tribol. 126(1):162

    Article  Google Scholar 

  21. Y.C. Liu, Q.J. Wang, W.Z. Wang, Y.Z. Hu and D. Zhu, ASME J. Tribol. 128(3) (2006) 641

    Article  Google Scholar 

  22. Dowson D., Higginson G.R. (1966) Elastohydrodynamic Lubrication. Pergamon Press, Oxford

    Google Scholar 

  23. Foord C.A., Hammann W.C., Cameron A. (1968) ASLE Trans. 11:31

    CAS  Google Scholar 

  24. Johnson G.J., Wayte R., Spikes H.A. (1991) STLE Tribol. Trans. 34:187

    Article  Google Scholar 

  25. Glovnea R.P., Olver A.V., Spikes H.A. (2005) STLE Tribol. Trans. 48:328

    Article  CAS  Google Scholar 

  26. Hamrock B.J., Dowson D. (1977) ASME J. Lubr. Tech. 99(2) :264

    CAS  Google Scholar 

  27. Krupka I., Hartl M., Liska M. (2005) ASME J. Tribol. 127(4) :890

    Article  Google Scholar 

  28. Cooper D., Moore A.J. (1994) Wear 175:93

    Article  CAS  Google Scholar 

  29. Bair S. (2000) Proc. Instn. Mech. Engrs. 214(J) :515

    Google Scholar 

  30. Jones W.R. (1995) STLE Tribol. Trans. 38:560

    Article  Google Scholar 

  31. Zhao J., Sadeghi F. (2003) ASME J. Tribol. 125(1) :76

    Article  Google Scholar 

  32. S. Bair, in: IUTAM Symposium on Elastohydrodynamics and Micro-Elastohydrodynamics, eds. R.W. Snidle and H.P. Evans (Springer-Verlag, 2006)

  33. Glovnea R.P., Spikes H.A. (2001) ASME J. Tribol. 123:254

    Article  CAS  Google Scholar 

  34. H. Blok, in: Proceedings of the International Symposium on Lubrication and Wear, eds. D. Muster and B. Sternlicht (McCutchan, 1963) 74

  35. Venner C.H., Lubrecht A.A. (1994) ASME J. Tribol. 116(4) :751

    Article  Google Scholar 

  36. Kaneta M., Sakai T., Nishikawa H. (1992) ASME J. Tribol. 114:779

    Google Scholar 

  37. Felix-Quinonez A., Ehret P., Summers J.L. (2004) Proc. Instn. Mech. Engrs. 218(J) :109

    Google Scholar 

  38. Krupka I., Hartl M., Poliscuk R. et al. (2000) ASME J. Tribol. 122(4) :689

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Yuchuan Liu and Q. Jane Wang would like to express their gratitude for the support from Office of Naval Research, Department of Energy, Eaton Corporation and Center for Surface Engineering & Tribology (CSET) at Georgia Institute of Technology & Northwestern University. The experimental results were obtained with the support of the Ministry of Education, Youth and Sports of the Czech Republic (Project MSM0021630508). Dr. Scott Bair of Georgia Institute of Technology should be acknowledged for providing the viscosity measurements. Ms. Ashlie Martini should also be acknowledged for her help in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., J. Wang, Q., Wang, W. et al. EHL simulation using the free-volume viscosity model. Tribol Lett 23, 27–37 (2006). https://doi.org/10.1007/s11249-006-9101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-006-9101-0

Keywords

Navigation