Log in

Gliding Arc Plasma Synthesis of MnO2 Nanorods for the Plasma-Catalytic Bleaching of Azoïc Amaranth Red Dye

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Manganese (IV) oxide (MnO2) nanoparticles were synthesized, via a plasma-chemical route by using a gliding arc discharge at atmospheric pressure. α-MnO2 nanorods were obtained from the chemical reduction of KMnO4. The synthesis yield was 96.8% after 4.5 min of exposure of the solution to the plasma. Further increase of the exposure time induced a decrease of MnO2 yield because of its reductive transformation into Mn2+ ions. Particles were characterized by X-ray powder diffraction, scanning electron microscopy, Fourier Transform Infrared spectroscopy, and nitrogen physisorption. The plasma-catalytic properties of the synthesized material were tested in the bleaching of amaranth red (AR). AR bleaching efficiencies of 17 and 44% were respectively obtained when the plasma and plasma-catalyst processes were applied for 30 min with initial pH 10. The influence of the initial pH, and catalyst concentration were investigated: the AR bleaching efficiency increased linearly with the catalyst concentration and increased markedly when the pH of the solution decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guo XF, Kim GJ (2011) Synthesis of ordered mesoporous manganese oxides by double replication for use as an electrode material. Bull Korean Chem Soc 32:186–190

    Article  Google Scholar 

  2. Ghezzar MR, Abdelmalek F, Belhadj M, Benderdouche N, Addou A (2009) Enhancement of the bleaching and degradation of textile wastewaters by gliging arc discharge plasma in the presence of TiO2 catalyst. J Hazard Mater 164:1266–1274

    Article  CAS  Google Scholar 

  3. Hongmin C, Chu PK, He JH, Hu T, Yang M (2011) Porous magnetic manganese oxide nanostructures: synthesis and their applications in water treatment. J Colloid Interface Sci 359:68–74

    Article  Google Scholar 

  4. Wang HJ, Chen XY (2011) Kinetic analysis and energy efficiency of phenol degradation in a plasma-photocatalysis system. J Hazard Mater 186:1888–1892

    Article  CAS  Google Scholar 

  5. Cornet D (1992) Catalyse Hétérogène, Techniques de l’Ingénieur. Génie des procédés ISSN 1762-8725. J 1250, 1–27

  6. Habibi MH, Askari E (2011) Photocatalytic degradation of an azo textile with manganese-doped ZnO nanoparticles coated on glass. Iran J Catal 1:41–44

    Google Scholar 

  7. Barret KA, McBride MB (2005) Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide. Environ Sci Technol 39:9223–9228

    Article  Google Scholar 

  8. Ahmed KAM, Peng H, Wu K, Huang K (2011) Hydrothermal preparation of nanostructured manganese oxides (MnOx) and their electrochemical and photocatalytic properties. Chem Eng J 172:531–539

    Article  CAS  Google Scholar 

  9. Liu J, Son Y, Cai J, Shen X, Suib S, Aindow M (2004) Size control, metal substitution, and catalytic application of cryptomelane nanomaterials prepared using cross-linking reagents. Chem Mater 16:276–285

    Article  CAS  Google Scholar 

  10. Subramanian V, Zhu H, Wie B (2008) Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem Phys Lett 453:242–249

    Article  CAS  Google Scholar 

  11. Kim SH, Kim SJ, Seung MO (1999) Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations. Chem Mater 11:557–563

    Article  CAS  Google Scholar 

  12. Zhang X, Yu P, Zhang H, Zhang D, Sun X, Ma Y (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529

    Article  CAS  Google Scholar 

  13. Li Y, Wang J, Zhang Y, Banis M, Liu J, Geng D, Li R, Sun X (2012) Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. J Colloid Interface Sci 369:123–128

    Article  CAS  Google Scholar 

  14. Bratescu MA, Saito N, Takai O (2011) Redox reactions in liquid plasma during iron oxide and oxide-hydroxide nanoparticles synthesis. Curr Appl Phys 11:S30–S34

    Article  Google Scholar 

  15. Brisset J-L, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Kamgang Youbi G, Herry J-M, Naïtali M, Bellon-Fontaine M-N (2008) Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media: examples of gliding arc discharge treated solutions. Ind Eng Chem Res 47:5761–5781

    Article  CAS  Google Scholar 

  16. Acayanka E, Tiya Djowe A, Laminsi S, Tchoumkwe CC, Nzali S, Poupi Mbouopda A, Ndifon PT, Gaigneaux EM (2013) Plasma-assisted synthesis of TiO2 nanorods by gliding arc discharge processing at atmospheric pressure for photocatalytic applications. Plasma Chem Plasma Process 33:725–735

    Article  CAS  Google Scholar 

  17. Lesueur H, Czernichowski A, Chapelle J (1988) A device for generating a low temperature plasma by means of gliding electrical discharges. French Patent 88-2: 639, 172

  18. Benstaali B, Boubert P, Chéron BG, Addou A, Brisset J-L (2002) Density and rotational temperature measurements of the NO and OH radicals produced by a gliding arc in humid air and their interaction with aqueous solutions. Plasma Chem Plasma Process 22:553–571

    Article  CAS  Google Scholar 

  19. Brisset J-L, Hnatiuc E (2012) Peroxynitrite: a re-examination of the chemical properties of non-thermal discharges burning in air over aqueous solutions. Plasma Chem Plasma Process 32:655–674

    Article  CAS  Google Scholar 

  20. Delair L, Brisset J-L, Cheron B, (2001) Spectral electrical and dynamic analysis ofa 50 Hz gliding arc. J High Temp Mater Process 5:381–402

    Article  CAS  Google Scholar 

  21. Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol 23:15–19

    Article  Google Scholar 

  22. Paltathe A, Laminsi S, Brisset J-L (2014) Pollutant abatement of unhairing-liming wokshop of a tannery unit by non-thermal gliding discharge in air. Int J Environ Prot Policy 6:200–204

    Article  Google Scholar 

  23. Moussa D, Vitrac H, Cheron BG, Hnatiuc E, Addou A, Brisset J-L (2002) Acidity control of the oxidation reactions induced by non-thermal plasma treatment of aqueous effluents in pollutant abatement processes. Plasma Phys Fusion Technol 6:34 34009462

    Google Scholar 

  24. Tiya-Djowe A, Laminsi S, Noupeyi GL, Gaigneaux EM (2015) Non-thermal plasma synthesis of sea-urchin like α-FeOOH for the catalytic oxidation of Orange II in aqueous solution. Appl Catal B 176–177:99–106

    Article  Google Scholar 

  25. Benstaali B, Moussa D, Addou A, Brisset J-L (1998) Plasma treatment of aqueous solutes: some chemical properties of a gliding arc in humid air. Eur Phys J Appl Phys 4:171–179

    Article  CAS  Google Scholar 

  26. Moussa D, Abdelmalek F, Benstaali B, Addou A, Hnatiuc E, Brisset J-L (2005) Acidity control of the gliding arc treatments of aqueous solutions: application to pollutant abatement and biodecontamination. Eur Phys J Appl Phys 29:2:189–199

    Article  CAS  Google Scholar 

  27. Brisset J-L, Benstaali B, Moussa D, Fanmoe J, Njoyim-Tamungang E (2011) Acidity control of plasma-chemical oxidation: applications to dye removal, urban waste abatement and microbial inactivation. Plasma Sources Technol 20:034021

    Article  Google Scholar 

  28. Yuan A, Zhang Q (2006) A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochem Commun 8:1173–1178

    Article  CAS  Google Scholar 

  29. Yousefi T, Davarkhah R, Golikand AN, Mashhadizadeh MH (2013) Synthesis, characterization, and supercapacitor studies of manganese (IV) oxide nanowires. Mater Sci Semicond Process 16:868–876

    Article  CAS  Google Scholar 

  30. Rouqureol F, Rouquerol J, Sing K (1980) Adsorption by powders and porous solids. Academic Press, New York

    Google Scholar 

  31. Wang Y, Ding P, Wang C (2016) Fabrication and lithium properties of MnO2 hierarchical hollow cubes. J Alloys Compd 654:273–279

    Article  CAS  Google Scholar 

  32. Zhang YX, Zhu S, Dong M, Liu CP, Wen ZQ (2013) Hydrothermally tailoring low-dimensional MnOx nanostructure and their high electrochemical performance. Int J Electrochem Sci 8:2407–2416

    Google Scholar 

  33. Ghezzar MR, Abdelmalek F, Belhadj M, Benderdouche N, Addou A (2007) Gliding arc plasma assisted photocatalytic degradation of anthroquinonic acid green 25 in solution with TiO2. J Appl Catal B 72:304–313

    Article  CAS  Google Scholar 

  34. Kannan R, Jegan A, Ramasubbu A, Karunakaran K, Vasanthkumar S (2011) Synthesis and catalytic studies of layered and OMS type manganese oxide material. J Nanomater Biostruct 6:755–760

    Google Scholar 

  35. Tiya-Djowe A, Acayanka E, Longtio-Nkouongfo G, Laminsi S, Gaigneaux EM (2015) Enhanced discolouration of methyl violet 10 B in a gliding arc plasma reactor by the maghemite nanoparticles used as heterogeneous catalyst. J Environ Catal Eng 3:953–960

    Article  CAS  Google Scholar 

  36. Djepang SA, Laminsi S, Njoyim-Tamungang E, Ngnintedem C, Brisset J-L (2014) Plasma-chemical and photo-catalytic degradation of bromophenol blue. Chem Mater Eng 2(1):14–23

    Google Scholar 

  37. Kansal SK, Singh M, Sud D (2008) Studies of TiO2/ZnO photocatalysed degradation of lignin. J Hazard Mater 153:412–417

    Article  CAS  Google Scholar 

  38. Sandip S, Anjali P (2014) Microporous assembly of MnO2 nanosheets for malachite green degradation. Sep Purif Technol 134:26–36

    Article  Google Scholar 

  39. Kansal SK, Singh M, Sud D (2007) Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalyst. J Hazard Mater 141:581–590

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. J-.L. Brisset of University of Rouen for plasma reactor support. They are also grateful to the “Université catholique de Louvain” for the grant awarded to F.W. Boyom Tatchemo from the “Coopération au développement” program. Finally, the authors wish to thank Mr. Thierry Belmonte of the “Institut Jean Lamour” (University of Lorraine) for the facilities of SEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Laminsi or E. M. Gaigneaux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatchemo, F.W.B., Nzali, S., Kamgang Youbi, G. et al. Gliding Arc Plasma Synthesis of MnO2 Nanorods for the Plasma-Catalytic Bleaching of Azoïc Amaranth Red Dye. Top Catal 60, 962–972 (2017). https://doi.org/10.1007/s11244-017-0761-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0761-9

Keywords

Navigation