Log in

Thermal Evolution of the Structure and Activity of Rh Overlayer Catalysts Prepared by Pulsed Arc-Plasma Deposition

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Nanometric Rh overlayers were formed on Fe–Cr–Al stainless steel (SUS) foils by pulsed cathodic arc-plasma (AP) technique to investigate the thermal evolution of the structure and catalytic activity for stoichiometric NO–CO–C3H6–O2 reaction. As-prepared Rh overlayer catalysts (Rh/SUS) with 2000–8000 AP pulsing showed steep light-off of NO, CO and C3H6 at around 250 °C and their conversions soon reached to almost 100%. After thermal aging at 900 °C in H2O/air, however, the catalytic activity was decreased to the different extent depending on the number of AP pulsing. The most significant deactivation was observed for the smallest numbers of AP pulsing (2000), because Al in the foil was oxidized during the aging to form a passivation layer of α-Al2O3, which covered the surface of the foil and decreased the surface concentration of Rh. To overcome this deactivation, the Rh overlayer was formed by AP after preheating the foil at 1000 °C in air. This modified preparation process enables the deposition of Rh overlayer on the highly crystalline α-Al2O3 layer at the surface of the foil, which is found to be much more stable against thermal deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shelef M (1975) Nitric oxide: surface reactions removal from auto exhaust. Catal Rev 11:1–40. doi:10.1080/01614947508079980

    Article  CAS  Google Scholar 

  2. Taylor KC (1993) Nitric oxide catalysis in automotive exhaust systems. Catal Rev 35:457–481. doi:10.1080/01614949308013915

    Article  CAS  Google Scholar 

  3. Shelef M, Graham GW (1994) Why rhodium in automotive three-way catalysts? Catal Rev 36:433–457. doi:10.1080/01614949408009468

    Article  CAS  Google Scholar 

  4. Gandhi HS, Graham GW, McCabe RW (2003) Automotive exhaust catalysis. J Catal 216:433–442. doi:10.1016/S0021-9517(02)00067-2

    Article  CAS  Google Scholar 

  5. Williams JL (2001) Monolith structures, materials, properties and uses. Catal Today 69:3–9. doi:10.1016/S0920-5861(01)00348-0

    Article  CAS  Google Scholar 

  6. Lachman IM, Williams JL (1992) Extruded monolithic catalyst supports. Catal Today 14:317–329

    Article  CAS  Google Scholar 

  7. Nonnenmann M (1990) New high-performance gas flow equalizing metal supports for automotive exhaust gas catalysts. doi:10.4271/900270

  8. Määttänen M, Lylykangas R (1990) Mechanical strength of a metallic catalytic converter made of precoated foil. doi:10.4271/900505

  9. Misumi S, Yoshida H, Hinokuma S, et al (2016) A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst. Sci Rep 6:29737. doi:10.1038/srep29737

    Article  CAS  Google Scholar 

  10. Hinokuma S, Kogami H, Yamashita N et al (2014) Subnano-particle Ce catalyst prepared by pulsed arc-plasma process. Catal Commun 54:81–85. doi:10.1016/j.catcom.2014.05.025

    Article  CAS  Google Scholar 

  11. Kim SH, Jung CH, Sahu N, Park D, Yun JY, Ha H, Park JY (2013) Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation. Appl Catal A 454:53–58. doi:10.1016/j.apcata.2012.12.049

    Article  CAS  Google Scholar 

  12. Hinokuma S, Yamashita N, Katsuhara Y, et al (2015) CO oxidation activity of thermally stable Fe–Cu/CeO2 catalysts prepared by dual-mode arc-plasma process. Catal Sci Technol 5:3945–3952. doi:10.1039/C5CY00370A

    Article  CAS  Google Scholar 

  13. Hinokuma S, Misumi S, Yoshida H, Machida M (2015) Nanoparticle catalyst preparation using pulsed arc plasma deposition. Catal Sci Technol 5:4249–4257. doi:10.1039/C5CY00636H

    Article  CAS  Google Scholar 

  14. Yoshida H, Yamashita N, Ijichi S, et al (2015) A thermally stable Cr–Cu nanostructure embedded in the CeO2 surface as a substitute for platinum-group metal catalysts. ACS Catal 5:6738–6747. doi:10.1021/acscatal.5b01847

    Article  CAS  Google Scholar 

  15. Qadir K, Kim SH, Kim SM et al (2012) Support effect of arc plasma deposited Pt nanoparticles/TiO2 substrate on catalytic activity of CO oxidation. J Phys Chem C 116:24054–24059. doi:10.1021/jp306461v

    Article  CAS  Google Scholar 

  16. Fujitani T, Nakamura I, Akita T et al (2009) Hydrogen dissociation by gold clusters. Angew Chem Int Ed 48:9515–9518 doi:10.1002/anie.200905380

    Article  CAS  Google Scholar 

  17. Yao HC, Japar S, Shelef M (1977) Surface interactions in the system Rh/Al2O3. J Catal 50:407–418. doi:10.1016/0021-9517(77)90053-7

    Article  CAS  Google Scholar 

  18. Chen JG, Colaianni ML, Chen PJ et al (1990) Thermal behavior of a Rh/Al2O3 model catalyst: disappearance of surface Rh upon heating. J Phys Chem 94:5059–5062

    Article  CAS  Google Scholar 

  19. Beck DD, Carr CJ (1993) Effects of high-temperature aging on the dispersion of Rh/Al2O3. J Catal 144:296–310. doi:10.1006/jcat.1993.1331

    Article  CAS  Google Scholar 

  20. Burch R, Loader PK, Cruise NA (1996) An investigation of the deactivation of Rh/alumina catalysts under strong oxidising conditions. Appl Catal A Gen 147:375–394. doi:10.1016/S0926-860X(96)00212-8

    Article  CAS  Google Scholar 

  21. Yao HC, Stepien HK, Gandhi HS (1980) Metal-support interaction in automotive exhaust catalysts: Rh-washcoat interaction. J Catal 61:547–550. doi:10.1016/0021-9517(80)90406-6

    Article  CAS  Google Scholar 

  22. Haneda M, Houshito O, Sato T, Takagi H, Shinoda K, Nakahara Y, Hiroe K, Hamada H (2010) Improved activity of Rh/CeO2–ZrO2 three-way catalyst by high-temperature ageing. Catal Commun 11(5):317–321. doi:10.1016/j.catcom.2009.10.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the MEXT (Ministry of Education Culture, Sports, Science and Technology) program ‘Elements Strategy Initiative to Form Core Research Center’ (since 2012) and the JST (Japan Science and Technology Agency) program ‘A-STEP AS262Z00723M’, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Machida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misumi, S., Yoshida, H., Matsumoto, A. et al. Thermal Evolution of the Structure and Activity of Rh Overlayer Catalysts Prepared by Pulsed Arc-Plasma Deposition. Top Catal 60, 955–961 (2017). https://doi.org/10.1007/s11244-017-0760-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0760-x

Keywords

Navigation