Log in

Cold Plasma for Synthesizing High Performance Bimetallic PdCu catalysts: Effect of Reduction Sequence and Pd/Cu Atomic Ratios

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Alumina supported bimetallic PdCu catalysts were prepared by simple incipient wetness impregnation followed by the process of atmospheric-pressure cold plasma reduction using Pd(NO3)2 and Cu(NO3)2 as Pd and Cu precursors, respectively. The influence of reduction sequence and Pd/Cu atomic ratios on the structure and performance of the catalysts were investigated. The highest CO oxidation activity was obtained for the PdCu catalyst (PdCu/Al2O3–P) prepared by co-impregnation and reduction of the Pd and Cu precursors with a Pd/Cu atomic ratio of 1:1. Meantime, the PdCu/Al2O3–P catalyst prepared by cold plasma exhibits much higher performance than that prepared by conventional thermal reduction. The optimum results from the alloying degree, crystallite size and dispersion of PdCu nanoparticles, and the chemisorbed oxygen species on the surface of the support. As a result of the interaction between Pd and Cu species, high alloying degree, small size and high dispersion of PdCu nanoparticles in PdCu/Al2O3–P were obtained. In addition, due to the fast (6 min reduction) and low temperature reduction process, more active chemisorbed oxygen species were formed on the surface of PdCu/Al2O3–P. The results of diffuse reflectance fourier transform infrared and catalytic stability show that the interaction between Pd and carbon species is weakened, which may facilitate the adsorption and activation of O2. These make PdCu/Al2O3–P an excellent catalyst for CO oxidation. Atmospheric-pressure cold plasma is proved to be a facile and efficient method for fabricating high performance bimetallic PdCu catalysts, which may have potential applications for preparing other bimetallic catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cheng T, Fang ZY, Hu QX, Han KD, Yang XZ, Zhang YJ (2007) Catal Commun 8:1167

    Article  CAS  Google Scholar 

  2. Jia CJ, Liu Y, Bongard H, Schüth F (2010) J Am Chem Soc 132:1520

    Article  CAS  Google Scholar 

  3. Huang YQ, Wang AQ, Wang XD, Zhang T (2007) Int J Hydrogen Energy 32:3880

    Article  CAS  Google Scholar 

  4. Qiao BT, Wang AQ, Yang XF, Allard LF, Jiang Z, Cui YT, Liu JY, Li J, Zhang T (2011) Nat Chem 3:634

    Article  CAS  Google Scholar 

  5. Chen H, Tong XL, Li YD (2009) Appl Catal A 370:59

    Article  CAS  Google Scholar 

  6. Qi B, Di LB, Xu WJ, Zhang XL (2014) J Mater Chem A 2:11885

    Article  CAS  Google Scholar 

  7. Zhou Y, Wang ZY, Liu C-J (2015) Catal Sci Technol 5:69

    Article  CAS  Google Scholar 

  8. Sandoval A, Aguilar A, Louis C, Traverse A, Zanell R (2011) J Catal 281:40

    Article  CAS  Google Scholar 

  9. Shi LH, Wang A, Zhang T, Zhang BS, Su DS, Li HQ, Song YJ (2013) J Phys Chem C 117:12526

    Article  CAS  Google Scholar 

  10. Renzas JR, Huang WY, Zhang YW, Grass ME, Hoang DT, Alayoglu S, Butcher DR, Tao F, Liu Z, Somorjai GA (2011) Phys Chem Chem Phys 13:2556

    Article  CAS  Google Scholar 

  11. Rosseler O, Louvet A, Keller V, Keller N (2011) Chem Commun 47:5331

    Article  CAS  Google Scholar 

  12. Wang F, Lu GX (2010) Int J Hydrogen Energy 35:7253

    Article  CAS  Google Scholar 

  13. Liu CJ, Li MY, Wang JQ, Zhou XT, Guo QT, Yan JM, Li YZ (2016) Chin J Catal 37:340

    Article  CAS  Google Scholar 

  14. Yang F, Li YF, Liu T, Xu K, Zhang LQ, Xu CM, Gao JS (2013) Chem Eng J 226:52

    Article  CAS  Google Scholar 

  15. Di LB, Zhang XL, Xu ZJ, Wang K (2014) Plasma Chem Plasma P 34:301

    Article  CAS  Google Scholar 

  16. Zhu B, Li X-S, Liu J-L, Liu J-B, Zhu XB, Zhu A-M (2015) Appl Catal B 179:69

    Article  CAS  Google Scholar 

  17. Zhang S, Chen C-Y, Jang B W-L, Zhu A-M (2015) Catal Today 256:161

    Article  CAS  Google Scholar 

  18. Xu HY, Luo JJ and Chu W (2014) RSC Adv 4:25729

    Article  CAS  Google Scholar 

  19. Xu WJ, Zhan ZB, Di LB, Zhang XL (2015) Catal Today 256: 148

    Article  CAS  Google Scholar 

  20. Xu ZJ, Qi B, Di LB, Zhang XL (2014) J Energy Chem 23:679

    Article  Google Scholar 

  21. Di LB, Xu WJ, Zhan ZB and Zhang XL (2015) RSC Adv 5:71854

    Article  CAS  Google Scholar 

  22. Di LB, Xu ZJ, Zhang XL (2013) Catal Today 211: 143

    Article  CAS  Google Scholar 

  23. Di LB, Xu ZJ, Wang K, Zhang XL (2013) Catal Today 211:109

    Article  CAS  Google Scholar 

  24. Hu SZ, Munoz FB, Noborikawa J, Haan J, Scudiero L, Ha S (2016) Appl Catal B 180:758

    Article  CAS  Google Scholar 

  25. Yin Z, Zhou W, Gao Y, Ma D, Kiely CJ, Bao XH (2012) Chem-Eur J 18:4887

    Article  CAS  Google Scholar 

  26. Liu X, Wang A, Mou C-Y, Zhang T (2008) Chem Commun 27:3187

    Article  Google Scholar 

  27. Zhang G, A. Wang, Wang X, Chen Y, Zhou Y, Tang Y, Lu L, Bao J, Lu T (2011) Appl Catal B 102:614

    Article  CAS  Google Scholar 

  28. Johánek V, Stará I, Matolín V (2002) Surf Sci 507–510:92

    Article  Google Scholar 

  29. Hammer B, Nørskov JK (1995) Nature 376:238

    Article  CAS  Google Scholar 

  30. Hammer B, Nørskov JK (2000) Adv Catal 45:71

    CAS  Google Scholar 

  31. Arenz M, Stamenkovic V, Schmidt TJ, Wandelt K, Ross PN, Markovic NM (2003) Phys Chem Chem Phys 5:4242

    Article  CAS  Google Scholar 

  32. Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK (1997) J Mol Catal A 115:421

    Article  CAS  Google Scholar 

  33. Mun BS, Lee C, Stamenkovic V, Markovic NM, Ross PN (2005) Phys Rev B 71:115420

    Article  Google Scholar 

  34. Jiang X, Koizumi N, Guo XW, Song CS (2015) Appl Catal B 170–171:173

    Article  Google Scholar 

  35. Wilken N, Wijayanti K, Kamasamudram K, Currier NW, Vedaiyan R, Yezerets A, Olsson L (2012) Appl Catal B 111:58

    Google Scholar 

  36. Guczi L (2005) Catal Today 101:53

    Article  CAS  Google Scholar 

  37. Venezia AM, Liotta LF, Deganello G, Schay Z, Guczi L (1999) J Catal 182:449

    Article  CAS  Google Scholar 

  38. Deng HB, Lin L, Liu SJ (2010) Energ Fuel 24:4797

    Article  CAS  Google Scholar 

  39. Hammer B, Morikawa Y, Nørskov JK (1996) Phys Rev Lett 76:2141

    Article  CAS  Google Scholar 

  40. Gao F, Goodman DW (2012) Chem Soc Rev 41:8009

    Article  CAS  Google Scholar 

  41. Liu P, Nørskov JK (2001) Phys Chem Chem Phys 3:3814

    Article  CAS  Google Scholar 

  42. Zorn K, Giorgio S, Halwax E, Henry CR, Grönbeck H, Rupprechter G (2011) J Phys Chem C 115:1103

    Article  CAS  Google Scholar 

  43. Bi YS, Dang GY, Zhao XH, Meng XF, Lu HJ, ** JT (2012) J Hazard Mater 229:245

    Article  Google Scholar 

  44. Zhou Y, **ang ZH, Cao DP, Liu C-J (2013) Chem Commun 49:5633

    Article  CAS  Google Scholar 

  45. Lesiak M, Binczarski M, Karski S, Maniukiewicz W, Rogowski J, Szubiakiewicz E, Berlowska J, Dziugan P, Witońska I (2014) J Mol Catal A 395:337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 11505019, 21673026), Dalian Youth Science and Technology Project (Grant No. 2015R089) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2015R1A4A1042434).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. B. Di or X. L. Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 356 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, L.B., Duan, D.Z., Park, DW. et al. Cold Plasma for Synthesizing High Performance Bimetallic PdCu catalysts: Effect of Reduction Sequence and Pd/Cu Atomic Ratios. Top Catal 60, 925–933 (2017). https://doi.org/10.1007/s11244-017-0757-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0757-5

Keywords

Navigation