Log in

In Situ Regeneration of Au Nanocatalysts by Atmospheric-Pressure Air Plasma: Regeneration Characteristics of Square-Wave Pulsed Plasma

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Atmospheric-pressure air plasma, powered by alternating current (AC) sine-wave high voltage, can in-situ regenerate deactivated Au nanocatalysts during CO oxidation, but it needs high-humidity air as the discharge gas. To overcome the limitation on humidity for in-situ regeneration of air plasma, a square-wave pulsed plasma is applied in this work. Differently from the AC plasma, the pulsed plasma exhibits excellent regeneration performance at any humidity. Further, surface carbonate decomposition, nitrogen oxides poisoning species and electric discharge of the pulsed plasma regeneration are investigated. For the pulsed plasma regeneration at any humidity, the evolution of CO2 concentration with the regeneration time almost keeps the same profile, featuring zero-order kinetics for the carbonate decomposition; on the other hand, whether in the gas phase or on the catalyst surface, there are no formation of poisoning nitrogen oxides. The pulsed plasma at any humidity has the powerful ability in carbonate decomposition and simultaneously prevents the formation of poisoning nitrogen oxides, which is ascribed to its highly centralized energy deposition with high instantaneous power and long interval of instantaneous power. For practical application, normal air is also confirmed to be qualified for the pulsed plasma regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408

    Article  Google Scholar 

  2. Bonmatí E, Casanovas A, Angurell I, Llorca J (2015) Hydrogen photoproduction from ethanol-water mixtures over Au–Cu alloy nanoparticles supported on TiO2. Top Catal 58:77–84

    Article  Google Scholar 

  3. Kipnis M (2014) Gold in CO oxidation and PROX: the role of reaction exothermicity and nanometer-scale particle size. Appl Catal B 152–153:38–45

    Article  Google Scholar 

  4. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  5. Scirè S, Liotta LF (2012) Supported gold catalysts for the total oxidation of volatile organic compounds. Appl Catal B 125:222–246

    Article  Google Scholar 

  6. Chen MS, Goodman DW (2004) The structure of catalytically active gold on titania. Science 306:252–255

    Article  CAS  Google Scholar 

  7. Liu X, He L, Liu Y-M, Cao Y (2013) Supported gold catalysis: from small molecule activation to green chemical synthesis. Acc Chem Res 47:793–804

    Article  Google Scholar 

  8. Zhang S, Li XS, Chen BB, Zhu X, Shi C, Zhu AM (2014) CO oxidation activity at room temperature over Au/CeO2 catalysts: disclosure of induction period and humidity effect. ACS Catal 4:3481–3489

    Article  CAS  Google Scholar 

  9. Zhao KF, Tang HL, Qiao BT, Li L, Wang JH (2015) High activity of Au/γ-Fe2O3 for CO oxidation: effect of support crystal phase in catalyst design. ACS Catal 5:3528–3539

    Article  CAS  Google Scholar 

  10. Li W, Comotti M, Schüth F (2006) Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation. J Catal 237:190–196

    Article  CAS  Google Scholar 

  11. Wu KC, Tung YL, Chen YL, Chen YW (2004) Catalytic oxidation of carbon monoxide over gold/iron hydroxide catalyst at ambient conditions. Appl Catal B 53:111–116

    Article  CAS  Google Scholar 

  12. Chen BB, Zhu X, Crocker M, Wang Y, Shi C (2014) FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Appl Catal B 154–155:73–81

    Article  Google Scholar 

  13. Denkwitz Y, Makosch M, Geserick J, Hörmann U, Selve S, Kaiser U, Hüsing N, Behm RJ (2009) Influence of the crystalline phase and surface area of the TiO2 support on the CO oxidation activity of mesoporous Au/TiO2 catalysts. Appl Catal B 91:470–480

    Article  CAS  Google Scholar 

  14. Karpenko A, Leppelt R, Cai J, Plzak V, Chuvilin A, Kaiser U, Behm RJ (2007) Deactivation of a Au/CeO2 catalyst during the low-temperature water-gas shift reaction and its reactivation: a combined TEM, XRD, XPS, DRIFTS, and activity study. J Catal 250:139–150

    Article  CAS  Google Scholar 

  15. Konova P, Naydenov A, Tabakova T, Mehandjiev D (2004) Deactivation of nanosize gold supported on zirconia in CO oxidation. Catal Commun 5:537–542

    Article  CAS  Google Scholar 

  16. Saavedra J, Powell C, Panthi B, Pursell CJ, Chandler BD (2013) CO oxidation over Au/TiO2 catalyst: pretreatment effects, catalyst deactivation, and carbonates production. J Catal 307:37–47

    Article  CAS  Google Scholar 

  17. Tripathi A, Kamble V, Gupta N (1999) Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO + O2 over Au/Fe2O3, Fe2O3, and polycrystalline gold catalysts. J Catal 187:332–342

    Article  CAS  Google Scholar 

  18. Konova P, Naydenov A, Venkov C, Mehandjiev D, Andreeva D, Tabakova T (2004) Activity and deactivation of Au/TiO2 catalyst in CO oxidation. J Mol Catal A 213:235–240

    Article  CAS  Google Scholar 

  19. Oh HS, Costello CK, Cheung C, Kung HH, Kung MC (2001) Regeneration of Au/γ-Al2O3 deactivated by CO oxidation. Stud Surf Sci Catal 139:375–381

    Article  CAS  Google Scholar 

  20. Kim HH, Tsubota S, Daté M, Ogata A, Futamura S (2007) Catalyst regeneration and activity enhancement of Au/TiO2 by atmospheric pressure nonthermal plasma. Appl Catal A 329:93–98

    Article  CAS  Google Scholar 

  21. Fan HY, Shi C, Li XS, Zhang S, Liu JL, Zhu AM (2012) In-situ plasma regeneration of deactivated Au/TiO2 nanocatalysts during CO oxidation and effect of N2 content. Appl Catal B 119–120:49–55

    Article  Google Scholar 

  22. Zhu B, Li XS, Liu JL, Liu JB, Zhu X, Zhu AM (2015) In-situ regeneration of Au nanocatalysts by atmospheric-pressure air plasma: significant contribution of water vapor. Appl Catal B 179:69–77

    Article  CAS  Google Scholar 

  23. Kim HH, Ogata A, Futamura S (2008) Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl Catal B 79:356–367

    Article  CAS  Google Scholar 

  24. Kim HH, Teramoto Y, Negishi N, Ogata A (2015) A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: a review. Catal Today 256:13–22

    Article  CAS  Google Scholar 

  25. Delannoy L, Hassan NE, Musi A, Le To NN, Krafft J-M, Louis C (2006) Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. J Phys Chem B 110:22471–22478

    Article  CAS  Google Scholar 

  26. Ojeda M, Zhan BZ, Iglesia E (2012) Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters. J Catal 285:92–102

    Article  CAS  Google Scholar 

  27. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144:175–192

    Article  CAS  Google Scholar 

  28. Bollinger MA, Vannice MA (1996) A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au/TiO2 catalysts. Appl Catal B 8:417–443

    CAS  Google Scholar 

  29. Liu H, Kozlov AI, Kozlova AP, Shido T, Asakura K, Iwasawa Y (1999) Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au (PPh3)(NO3) and as-precipitated titanium hydroxide. J Catal 185:252–264

    Article  CAS  Google Scholar 

  30. Debeila MA, Coville NJ, Scurrell MS, Hearne GR (2005) The effect of calcination temperature on the adsorption of nitric oxide on Au–TiO2: drifts studies. Appl Catal A 291:98–115

    Article  CAS  Google Scholar 

  31. Debeila MA, Coville NJ, Scurrell MS, Hearne GR, Witcomb MJ (2004) Effect of pretreatment variables on the reaction of nitric oxide (NO) with Au–TiO2: DRIFTS studies. J Phys Chem B 108:18254–18260

    Article  CAS  Google Scholar 

  32. Chen C, Bai H, Chang C (2007) Effect of plasma processing gas composition on the nitrogen-do** status and visible light photocatalysis of TiO2. J Phys Chem C 111:15228–15235

    Article  CAS  Google Scholar 

  33. Dailey BP, Shoolery JN (1955) The electron withdrawal power of substituent groups. J Am Chem Soc 77:3977–3981

    Article  CAS  Google Scholar 

  34. Ráhel J, Sherman DM (2005) The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure. J Phys D 38:547–554

    Article  Google Scholar 

  35. Rajasekaran P, Mertmann P, Bibinov N, Wandke D, Viöl W, Awakowicz P (2010) Filamentary and homogeneous modes of dielectric barrier discharge (DBD) in air: investigation through plasma characterization and simulation of surface irradiation. Plasma Process Polym 7:665–675

    Article  CAS  Google Scholar 

  36. Williamson JM, Trump DD, Bletzinger P, Ganguly BN (2006) Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge. J Phys D 39:4400–4406

    Article  CAS  Google Scholar 

  37. Fang Z, Yang H, Qiu Y (2010) Surface treatment of polyethylene terephthalate films using a microsecond pulse homogeneous dielectric barrier discharges in atmospheric air. IEEE Trans Plasma Sci 38:1615–1623

    Article  CAS  Google Scholar 

  38. Fridman A (2008) Plasma chemistry. Cambridge University Press, New York

    Book  Google Scholar 

  39. Liu S, Neiger M (2001) Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses. J Phys D 34:1632–1638

    Article  CAS  Google Scholar 

  40. Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724

    Article  CAS  Google Scholar 

  41. Widmann D, Behm RJ (2014) Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc Chem Res 47:740–749

    Article  CAS  Google Scholar 

  42. Lu XP, Ye T, Cao YG, Sun ZY, **ong Q, Tang ZY, **ong ZL, Hu J, Jiang ZH, Pan Y (2008) The roles of the various plasma agents in the inactivation of bacteria. J Appl Phys 104:053309

    Article  Google Scholar 

  43. Peyrous R, Pignolet P, Held B (1989) Kinetic simulation of gaseous species created by an electrical discharge in dry or humid oxygen. J Phys D 22:1658–1667

    Article  CAS  Google Scholar 

  44. Kogelschatz U, Eliasson B, Hirth M (1988) Ozone generation from oxygen and air: discharge physics and reaction mechanisms. Ozone Sci Eng 10:367–378

    Article  CAS  Google Scholar 

  45. Eliasson B, Kogelschatz U (1986) N2O formation in ozonizers. J Chem Phys 83:279–282

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (11175036) and Fundamental Research Funds for the Central Universities (DUT16LK16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aobing Zhu or Ai-Min Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 285 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Liu, JL., Li, XS. et al. In Situ Regeneration of Au Nanocatalysts by Atmospheric-Pressure Air Plasma: Regeneration Characteristics of Square-Wave Pulsed Plasma. Top Catal 60, 914–924 (2017). https://doi.org/10.1007/s11244-017-0756-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0756-6

Keywords

Navigation