Log in

Glass Beads Packed DBD-Plasma Assisted Dry Reforming of Methane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The aim of this work is to understand the effect of a packed bed dielectric barrier discharge for the transformation of greenhouse gases (CO2 and CH4) into value added products. Therefore, pure CH4 and CO2 have been introduced into the plasma discharge zone with the variation of feed flow rate, feed gas ratio and discharge power. It has been observed that at low flow rate of 20 mL/min (high residence time) the conversion of gases, selectivity and yield of products are higher, whereas, the optimum mole ratio of CH4/CO2 is 1.0. The activated species formed inside the plasma is diagnosed by emission spectroscopy. This study achieved 29% conversion of CH4 and 21% conversion of CO2 at SIE 6.4 J/mL with glass beads packed DBD, whereas energy efficiency has been found 1.75 mmol/kJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pawar V, Ray D, Subrahmanyam C, Janardhanan VM (2015) Energy Fuels 29:8047

    Article  CAS  Google Scholar 

  2. Nozaki T, Tsukijihara H, Fukui W, Okazaki K (2007) Energy Fuels 21:2525

    Article  CAS  Google Scholar 

  3. Mahammadunnisa S, Manoj Kumar Reddy P, Ramaraju B, Subrahmanyam C (2013) Energy Fuels 27:4441

    Article  CAS  Google Scholar 

  4. Kameshima S, Tamura K, Ishibashi Y, Nozaki T (2015) Catal Today 256:67

    Article  CAS  Google Scholar 

  5. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) J Phys D 44:274007

    Article  Google Scholar 

  6. Zeng Y, Zhu X, Mei D, Ashford B, Tu X (2015) Catal Today 256:80

    Article  CAS  Google Scholar 

  7. Mahammadunnisa S, Reddy EL, Ray D, Subrahmanyam C, Whitehead JC (2013) Int J Greenh Gas Control 16:361

    Article  CAS  Google Scholar 

  8. Mahammadunnisa S, Manoj Kumar Reddy P, Linga Reddy E, Subrahmanyam C (2013) Catal Today 211:53

    Article  CAS  Google Scholar 

  9. Linga Reddy E, Biju VM, Subrahmanyam C (2012) Appl Energy 95:87

    Article  CAS  Google Scholar 

  10. Mahammadunnisa S, Manoj Kumar Reddy P, Subrahmanyam C (2014) RSC Adv 4:4034

    Article  CAS  Google Scholar 

  11. Li X, Tao X, Yin Y (2009) IEEE Trans Plasma Sci 37(6):759

    Article  CAS  Google Scholar 

  12. Li MW, Tian YL, Xu GH (2007) Energy Fuels 21:2335

    Article  CAS  Google Scholar 

  13. Tu X, Whitehead JC (2014) Int J Hydrog Energy 39:9658

    Article  CAS  Google Scholar 

  14. Rueangjitt N, Sreethawong T, Chavadej S, Sekiguchi H (2009) Chem Eng J 155:874

    Article  CAS  Google Scholar 

  15. Snoeckx R, Zeng YX, Tu X, Bogaerts A (2015) RSC Adv 5:29799

    Article  Google Scholar 

  16. Wang Q, Yan BH, ** Y, Cheng Y (2009) Plasma Chem Plasma Process 29:217

    Article  Google Scholar 

  17. Goujard V, Tatibouët JM, Batiot-Dupeyrat C (2009) Appl Catal A 353:228

    Article  CAS  Google Scholar 

  18. Tu X, Whitehead JC (2012) Appl Catal B 125:439

    Article  CAS  Google Scholar 

  19. Zhang AJ, Zhu AM, Guo J, Xu Y, Shi C (2010) Chem Eng J 156:601

    Article  CAS  Google Scholar 

  20. Sentek J, Krawczyk K, Młotek M, Kalczewska M, Kroker T, Kolb T, Schenk A, Gericke KH, Schmidt-Szałowski K (2010) Appl Catal B 94:19

    Article  CAS  Google Scholar 

  21. Pham MH, Goujard V, Tatibouet JM, Batiot-Dupeyrat C (2011) Catal Today 171:67

    Article  CAS  Google Scholar 

  22. Gallon HJ, Tu X, Whitehead JC (2012) Plasma Process Polym 9:90

    Article  CAS  Google Scholar 

  23. Ray D, Subrahmanyam C (2016) RSC Adv 6:39492

    Article  CAS  Google Scholar 

  24. Mei D, Zhu X, He YL, Yan JD, Tu X (2015) Plasma Sources Sci Technol 24:015011

    Article  CAS  Google Scholar 

  25. Wang N, Qian W, Chu W, Wei F (2016) Catal Sci Technol. doi:10.1039/c5cy01790d.

    Google Scholar 

  26. Zhang L, Zhang Y (2015) RSC Adv 5:62173

    Article  CAS  Google Scholar 

  27. Zhang Y, Li Y, Wang Y, Liu C, Eliasson B (2003) Fuel Process Technol 83:101

    Article  CAS  Google Scholar 

  28. Kraus M, Egli W, Haffner K, Eliasson B, Kogelschatz U, Wokaun A (2002) Phys Chem Chem Phys 4:668

    Article  CAS  Google Scholar 

  29. Garcia-Cosio G, Calixto-Rodriguez M, Martinez H (2009) 29th ICPIG, Cancún, México, July 12–17, Topic number B6

Download references

Acknowledgements

The authors would like to acknowledge the funding supporter Ministry of New and Renewable Energy (MNRE), New Delhi, India (project No. CHY/2014-15/019/MNRE/CHS/0140). Debjyoti is thankful to UGC India for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrahmanyam Challapalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, D., Manoj Kumar Reddy, P. & Challapalli, S. Glass Beads Packed DBD-Plasma Assisted Dry Reforming of Methane. Top Catal 60, 869–878 (2017). https://doi.org/10.1007/s11244-017-0751-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0751-y

Keywords

Navigation