Log in

Ni Supported on LaFeO3 Perovskites for Methane Steam Reforming: On the Promotional Effects of Plasma Treatment in H2–Ar Atmosphere

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Steam reforming of methane for hydrogen production was performed over Ni catalysts supported on LaFeO3 perovskites synthesized with different methods and treated by non-thermal dielectric barrier discharge plasma (DBD) in H2/Ar atmosphere. It is found that catalysts prepared by glycine–nitrate combustion and sol–gel method show better performance than the one prepared with precipitation method. With plasma treatment before calcination, the catalytic performance of all the catalysts has been evidently improved. It is revealed that plasma treating can enhance the interaction between Ni and the LaFeO3 supports, thus resulting in catalysts with improved Ni dispersion, higher thermal stability and improved surface areas. SEM and TGA-DSC results testified that on the plasma treated catalysts, carbon deposition can be suppressed. These are believed to be the major reasons accounting for the improved catalytic performance of the catalysts by plasma treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu CJ, Ye JY, Jiang JJ, Pan YX (2011) ChemCatChem 3:529–541

    Article  CAS  Google Scholar 

  2. **e T, Shi LY, Zhang JP, Zhang DS (2014) RSC 50:7250–7253

    CAS  Google Scholar 

  3. Theofanidis SA, Galvita VV, Poelman H, Marin GB (2015) ACS Catal 5:3028–3039

    Article  CAS  Google Scholar 

  4. Liu JJ, Peng HG, Liu WM, Xu XL, Wang X, Li CQ, Zhou WF, Yuan P, Chen XH, Zhang WG, Zhan HB (2014) ChemCatChem 6:2095–2104

    Article  CAS  Google Scholar 

  5. Polo-Garzon F, He M, Bruce DA (2016) J Catal 333:59–70

    Article  CAS  Google Scholar 

  6. Li LD, Anjum DH, Zhu HB, Saih Y, Laveille PV, D'Souza L, Basset JM (2015) ChemCatChem 7:427–433

    Article  CAS  Google Scholar 

  7. Higo T, Hashimoto T, Mukai D, Nagatake S, Ogo S, Sugiura Y, Sekine Y (2015) J Jpn Pet Inst 58:86–96

    Article  CAS  Google Scholar 

  8. Zhang Y, Wang W, Wang ZY, Zhou XT, Wang Z, Liu CJ (2015) Catal Today 256:130–136

    Article  CAS  Google Scholar 

  9. Valderrama G, Kiennemann A, Goldwasser MR (2010) J Power Sources 195:1765–1771

    Article  CAS  Google Scholar 

  10. Gallego GS, Batiot-Dupeyrat C, Barrault J, Florez E, Mondragon F (2008) Appl Catal A 334:251–258

    Article  CAS  Google Scholar 

  11. Horiuchi T, Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T (1996) Appl Catal A 144:111–120

    Article  CAS  Google Scholar 

  12. Mukai D, Tochiya S, Murai Y, Imori M, Hashimoto T, Sugiura Y, Sekine Y (2013) Appl Catal A 453:60–70

    Article  CAS  Google Scholar 

  13. Fang XZ, Zhang XH, Guo Y, Chen MM, Liu WM, Xu XL, Peng HG, Gao ZX, Wang X, Li CQ (2016) Int J Hydro Energy 41:11141–11153

    Article  CAS  Google Scholar 

  14. Peng HG, Ma YH, Liu WM, Xu XL, Fang XZ, Lian J, Wang X, Li CQ, Zhou WF, Yuan P (2015) J Energy Chem 24:416–424

    Article  Google Scholar 

  15. Ma YH, Wang X, You XJ, Liu JJ, Tian JS, Xu XL, Peng HG, Liu WM, Li CQ, Zhou WF (2014) ChemCatChem 6:3366–3376

    Article  CAS  Google Scholar 

  16. Fang XZ, Lian J, Nie KW, Zhang X, Dai YF, Zhou WF, Wang X (2016) Int J Hydro Energy 25:825–831

    Google Scholar 

  17. Lim SS, Lee HJ, Moon DJ, Kim JH, Park NC, Shin JS, Kim YC (2009) Chem Eng J 152:220–226

    Article  CAS  Google Scholar 

  18. Jung JI, Jeong HY, Lee JS, Kim MG, Cho J (2014) Angew Chem Int Ed Engl 53:4582–4586

    Article  CAS  Google Scholar 

  19. Zhu JJ, Li HL, Zhong LY, **ao P, Xu XL, Yang XG, Zhao Z, Li JL (2014) ACS Catal 4:2917–2940

    Article  CAS  Google Scholar 

  20. Chawla SK, George M, Patel F, Patel S (2013) Procedia Eng 51:461–466

    Article  Google Scholar 

  21. Chen ZX, Chen Y, Jiang YS (2002) J Phys Chem B 106:9986–9992

    Article  CAS  Google Scholar 

  22. Urasaki K, Sekine Y, Kawabe S, Kikuchi E, Matsukata M (2005) Appl Catal A 28:23–29

    Article  Google Scholar 

  23. Yang EH, Noh YS, Ramesh S, Lim SS, Dong JM (2015) Fuel Process Tech 134:404–413

    Article  CAS  Google Scholar 

  24. Valderrama G, Goldwasser MR, Navarro CU, Tatibouët JM, Barrault J, Batiot-Dupeyrat C, Martínez F (2005) Catal Today 107–108:785–791

    Article  Google Scholar 

  25. Kapokova L, Pavlova S, Bunina R, Alikina G, Krieger T, Ishchenko A, Rogov V, Sadykov V (2011) Catal Today 164:227–233

    Article  CAS  Google Scholar 

  26. Zhao Y, Pan Y, **e YX, Liu CJ (2008) Catal Commun 9:1558–1562

    Article  CAS  Google Scholar 

  27. Zou JJ, Zhang YP, Liu CJ (2006) Langmuir 22:11388–11394

    Article  CAS  Google Scholar 

  28. Zhu XL, Huo P, Zhang YP, Cheng DG, Liu CJ (2008) Appl Catal B Environ 81:132–140

    Article  CAS  Google Scholar 

  29. ** LJ, Li Y, Lin P, Hu HQ (2014) Int J Hydro Energy 39:5756–5763

    Article  CAS  Google Scholar 

  30. Song HK, Chio JW, Yue SH, Lee H, Na BK (2004) Catal Today 89:27–33

    Article  CAS  Google Scholar 

  31. Tu X, Whitehead JC (2012) Appl Catal B Environ 125:439–448

    Article  CAS  Google Scholar 

  32. Zhang YH, Wang M, Le ZG, Huang GL, Zou LX, Chen ZS (2014) Ceram Int 40:5223–5230

    Article  CAS  Google Scholar 

  33. Kondakindi RR, Karan K, Brant A (2012) Ceram Int 38:449–456

    Article  CAS  Google Scholar 

  34. Liu L, Han A, Ye M, Zhao M (2015) Sol Energ Mat Sol C 132:377–384

    Article  CAS  Google Scholar 

  35. Liu Y, Wang Z, Liu CJ (2015) Catal Today 256:137–141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21567016, 21566022, 21263015), the Natural Science Foundation of Jiangxi Province (20151BBE50006, 20151BAB203024), the Education Department of Jiangxi Province (KJLD14005, GJJ150016) and the Graduate Student Creativity Funding of Nanchang University (CX2015042), which is greatly acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongming Wang or **ang Wang.

Additional information

Jie Lian and **uzhong Fang have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, J., Fang, X., Liu, W. et al. Ni Supported on LaFeO3 Perovskites for Methane Steam Reforming: On the Promotional Effects of Plasma Treatment in H2–Ar Atmosphere. Top Catal 60, 831–842 (2017). https://doi.org/10.1007/s11244-017-0748-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0748-6

Keywords

Navigation