Log in

Catalyzed Particulate Filter Regeneration by Platinum Versus Noble Metal-Free Catalysts: From Principles to Real Application

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this short review, results from previous investigations by our group regarding 2 % Cu/ceria–zirconia catalyst incorporated onto a lab-scale diesel particulate filter (DPF) were compiled and compared to recent results concerning commercial platinum/alumina incorporated onto a DPF, in order to explore their catalytic regeneration. Their behavior was compared to the corresponding powder catalytic activity. In this sense, NO oxidation to NO2 and NO/NO2 recycling efficiency on the soot combustion catalytic activity were investigated for different catalyst/soot ratios. The active phase incorporated onto the DPFs was checked to be mechanically stable and reproducible in terms of amounts. Results show that catalytic activity towards NO oxidation to NO2 remains essentially constant after several cycles for both DPF-supported catalysts. It was also found that soot combustion rates presented by Pt/alumina-DPF (in 1:3 soot/catalyst ratio) and CuO/ceria–zirconia-DPF (in 1:5 soot/catalyst ratio) are very similar. It reveals that this noble metal-free catalyst can be competitive compared to a commercial platinum-based one, regarding soot combustion reaction in a particulate filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Johnson TV (2008) Platin Met Rev 52:23–37

    Article  CAS  Google Scholar 

  2. Johnson TV (2007) SAE Tech Pap 2007–01–0233

  3. Guan B, Zhan R, Lin H, Huang Z (2015) J Environ Manag 154:225–258

    Article  CAS  Google Scholar 

  4. Johnson TV (2013) Platin Met Rev 57:117–122

    Article  Google Scholar 

  5. Johnson TV (2013) SAE Tech Pap 2013–01–0538

  6. Johnson TV (2014) SAE Tech Pap 2014–01–1491

  7. DieselNet. https://www.dieselnet.com/tech/health_pm.php. Accessed 1 Aug 2015)

  8. Johnson TV (2012) SAE Tech Pap 2012–01–0368

  9. Kim CH, Schmid M, Schmieg SJ, Tan JL, Li W (2011) SAE Tech Pap 2011–01–1134

  10. Khair MK (2003) SAE Tech Pap 2003–01–2303

  11. Kuwahara T, Nishii S, Kuroki T, Okubo M (2013) Appl Energy 111:652–656

    Article  CAS  Google Scholar 

  12. Southward BWL, Basso S, Pfeifer M (2010) SAE Tech Pap. 2010–01–0558

  13. Maunula T, Matilainen P, Louhelainen M, Juvonen P, Kinnunen T (2007) SAE Tech Pap 2007–01–0041

  14. Salvat O, Marez P, Belot G (2000) SAE Tech Pap 2000–01–0473

  15. Ootake M, Kondou T, Ikeda M, Daigo M, Nakano M, Yokoyama J, Miura M (2007) SAE Tech Pap 2007–01–1061

  16. Fino D, Specchia V (2008) Powder Technol 180:64–73

    Article  CAS  Google Scholar 

  17. Toyota European Patent Application (2001), 01107629.6

  18. Krone Filtertechnik. http://www.krone-filter.de/en/Particle-filter/Passive-diesel-particulate-filter-systems/Engelhard-DPX-diesel-particle-filters/Engelhard-DPX-diesel-particle-filters.html. Accessed 1 Aug 2015

  19. Liu S, Wu X, Weng D, Ran R (2015) J Rare Earths 33:567–590

    Article  CAS  Google Scholar 

  20. Johnson Matthey. http://www.platinum.matthey.com. Accessed 1 Aug 2015

  21. Atribak I, Such-Basáñez I, Bueno-López A, García-García A (2007) J Catal 250:75–84

    Article  CAS  Google Scholar 

  22. Giménez-Mañogil J, García-García A (2015) Fuel Process Technol 129:227–235

    Article  Google Scholar 

  23. Giménez-Mañogil J, Bueno-López A, García-García A (2014) Appl Catal B 152–153:99–107

    Article  Google Scholar 

  24. Atribak I, Bueno-López A, García-García A (2008) Catal Commun 9:250–255

    Article  CAS  Google Scholar 

  25. Rose D, Jamison JA, Boger T, Kataria R (2013) SAE Tech Pap 2013–26–0051

  26. Quiles-Díaz S, Giménez-Mañogil J, García-García A (2015) RSC Adv 5:17018–17029

    Article  Google Scholar 

  27. Neyertz CA, Banús ED, Miró EE, Querini CA (2014) Chem Eng J 474:168–177

    Google Scholar 

  28. Neyertz CA, Miró EE, Querini CA (2012) Chem Eng J 181–182:93–102

    Article  Google Scholar 

  29. Banús ED, Milt VG, Miró EE, Ulla MA (2013) Appl Catal B 132–133:479–486

    Article  Google Scholar 

  30. Marques R, Darcy P, Da Costa P, Mellottée H, Trichard JM, Djéga-Mariadassou G (2004) J Mol Catal A 221:127–136

    Article  CAS  Google Scholar 

  31. Atribak I, Bueno-López A, García-García A, Azambre B (2010) Phys Chem Chem Phys 12:13770–13779

    Article  CAS  Google Scholar 

  32. Liu S, Wu X, Weng D, Li M, Lee HR (2012) Chem Eng J 203:25–35

    Article  CAS  Google Scholar 

  33. Toops TJ, Pihl JA, Finney CEA, Gregor J, Bilheux H (2015) Emiss Control Sci Technol 1:24–31

    Article  CAS  Google Scholar 

  34. Johnson TV (2011) SAE Tech Pap 2011–01–0304

  35. Atribak I, Azambre B, Bueno López A, García-García A (2009) Appl Catal B 92:126–137

    Article  CAS  Google Scholar 

  36. Guillén-Hurtado N, Bueno-López A, García-García A (2012) Appl Catal A 437–438:166–172

    Article  Google Scholar 

  37. Atribak I, López-Suárez FE, Bueno-López A, García-García A (2011) Catal Today 176:404–408

    Article  CAS  Google Scholar 

  38. Leistner K, Nicolle A, Da Costa P (2012) Energy Fuels 26:6091–6097

    Article  CAS  Google Scholar 

  39. Setiabudi A, Makkee M, Moulijn JA (2004) Top Catal 30–31:305–308

    Article  Google Scholar 

  40. Guillén-Hurtado N, López-Suárez FE, Bueno-López A, García-García A (2014) React Kinet Mech Catal 111:167–182

    Article  Google Scholar 

  41. Boger T, Rose D, Nicolin P, Gunasekaran N, Glasson T (2015) Emiss Control Sci Technol 1:49–63

    Article  CAS  Google Scholar 

  42. Obeid E, Lizarraga L, Tsampas MN, Cordier A, Boréave A, Steil MC, Blanchard G, Pajot K, Vernoux P (2014) J Catal 309:87–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Financial Support of Generalitat Valenciana (PROMETEOII/2014/010 Project), the Spanish Ministry of Economy and Competitiveness (CTQ2015-64801-R project, UE-FEDER funding). S.Q.D. wishes to thank VIDI-University of Alicante her Master Thesis Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avelina García-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giménez-Mañogil, J., Quiles-Díaz, S., Guillén-Hurtado, N. et al. Catalyzed Particulate Filter Regeneration by Platinum Versus Noble Metal-Free Catalysts: From Principles to Real Application. Top Catal 60, 2–12 (2017). https://doi.org/10.1007/s11244-016-0730-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0730-8

Keywords

Navigation