Log in

CO Dissociation at Vacancy Sites on Hägg Iron Carbide: Direct Versus Hydrogen-Assisted Routes Investigated with DFT

  • OriginalPaper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The mechanism of activation of CO remains under debate in Fe-catalysed Fischer–Tropsch synthesis, in which iron carbides form under reaction conditions. Direct and H-assisted paths for CO activation and dissociation are investigated at carbon vacancy and non-vacancy sites on the Fe5C2(010) surface of Hägg iron carbide using density functional theory. The calculated overall energy barrier for direct and for H-assisted dissociation of CO via formation of an HCO intermediate is the same, 1.42 and 1.41 eV, respectively, but the lowest energy paths are facilitated by different vacancy sites. Furthermore, dissociation at a non-vacancy site is only marginally higher in energy by 0.1 eV. Dissociation through formation of a hydroxymethylidyne (COH) intermediate is less competitive kinetically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that in ref. 54 a left-handed axis system was used for the monoclinic unit cell of bulk Hägg iron carbide. The surface termination labelled Fe5C2(001)−0.05 in ref. 54 is equivalent to Fe5C2(100)−0.098 relative to the orientation of the bulk unit cell used in the current work.

References

  1. Steynberg AP, Dry ME (eds) (2004) Studies in Surface Science and Catalysis, vol 152. Fischer–Tropsch Technology, Elsevier, Amsterdam

    Google Scholar 

  2. van Steen E, Claeys M (2008) Chem Eng Technol 31:655–666

    Article  Google Scholar 

  3. Inderwildi OR, Jenkins SJ (2008) Chem Soc Rev 37:2274–2309

    Article  CAS  Google Scholar 

  4. Perego C, Bortolo R, Zennaro R (2009) Catal Today 142:9–16

    Article  CAS  Google Scholar 

  5. Vannice MA (1975) J Catal 37:449–461

    Article  CAS  Google Scholar 

  6. Schulz H (1999) Appl Catal A Gen 186:3–12

    Article  CAS  Google Scholar 

  7. van Steen E, Schulz H (1999) Appl Catal A Gen 186:309–320

    Article  Google Scholar 

  8. Claeys M, van Steen E (2004) Stud Surf Sci Catal 152:601–680

    Article  CAS  Google Scholar 

  9. Davis BH (2001) Fuel Process Technol 71:157–166

    Article  CAS  Google Scholar 

  10. Dry ME (1996) Appl Catal A Gen 138:319–344

    Article  CAS  Google Scholar 

  11. Davis BH (2009) Catal Today 141:25–33

    Article  CAS  Google Scholar 

  12. Biloen P, Helle JN, Sachtler WMH (1979) J Catal 58:95–107

    Article  CAS  Google Scholar 

  13. Brady RC, Pettit R (1980) J Am Chem Soc 102:6181–6182

    Article  CAS  Google Scholar 

  14. Brady RC, Pettit R (1981) J Am Chem Soc 103:1287–1289

    Article  CAS  Google Scholar 

  15. van Barneveld WAA, Ponec V (1984) J Catal 88:382–387

    Article  Google Scholar 

  16. Kummer JT, Emmett PH (1953) J Am Chem Soc 75:5177–5183

    Article  CAS  Google Scholar 

  17. Hall WK, Kokes RJ, Emmett PH (1960) J Am Chem Soc 82:1027–1037

    Article  CAS  Google Scholar 

  18. Turner ML, Marsih N, Mann BE, Quyoum R, Long HC, Maitlis PM (2002) J Am Chem Soc 124:10456–10472

    Article  CAS  Google Scholar 

  19. Gaube J, Klein H-F (2008) J Mol Catal A Chem 283:60–68

    Article  CAS  Google Scholar 

  20. Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) J Catal 272:287–297

    Article  CAS  Google Scholar 

  21. Loveless BT, Buda C, Neurock M, Iglesia E (2013) J Am Chem Soc 135:6107–6121

    Article  CAS  Google Scholar 

  22. Schweicher J, Bundhoo A, Kruse N (2012) J Am Chem Soc 134:16135–16138

    Article  CAS  Google Scholar 

  23. Inderwildi OR, King DA, Jenkins SJ (2009) Phys Chem Chem Phys 11:11110–11112

    Article  CAS  Google Scholar 

  24. Botes FG, Niemantsverdriet JW, van de Loosdrecht J (2013) Catal Today 215:112–120

    Article  CAS  Google Scholar 

  25. Rofer-DePoorter CK (1981) Chem Rev 81:447–474

    Article  CAS  Google Scholar 

  26. Muetterties EL, Stein J (1979) Chem Rev 79:479–490

    Article  CAS  Google Scholar 

  27. Shetty S, van Santen RA (2011) Catal Today 171:168–173

    Article  CAS  Google Scholar 

  28. van Helden P, van den Berg J-A, Ciobîcă IM (2012) Catal Sci Technol 2:491–494

    Article  Google Scholar 

  29. Inderwildi OR, Jenkins SJ, King DA (2008) Angew Chem Int Ed 47:5253–5255

    Article  CAS  Google Scholar 

  30. Huo C-F, Li Y-W, Wang J, Jiao H (2008) J Phys Chem C 112:14108–14116

    Article  CAS  Google Scholar 

  31. Li H, Fu G, Xu X (2012) Phys Chem Chem Phys 14:16686–16694

    Article  CAS  Google Scholar 

  32. Inderwildi OR, Jenkins SJ, King DA (2008) J Phys Chem C 112:1305–1307

    Article  CAS  Google Scholar 

  33. Andersson MP, Abild-Pedersen F, Remediakis IN, Bligaard T, Jones G, Engbæk J, Lytken O, Horch S, Nielsen JH, Sehested J, Rostrup-Nielsen JR, Nørskov JK, Chorkendorff I (2008) J Catal 255:6–19

    Article  CAS  Google Scholar 

  34. Mitchell WJ, Wang Y, **e J, Weinberg WH (1993) J Am Chem Soc 115:4381–4382

    Article  CAS  Google Scholar 

  35. Mitchell WJ, **e J, Jachimowski TA, Weinberg WH (1995) J Am Chem Soc 117:2606–2617

    Article  CAS  Google Scholar 

  36. Eckle S, Anfang H-G, Behm RJ (2011) J Phys Chem C 115:1361–1367

    Article  CAS  Google Scholar 

  37. Morgan GA, Sorescu DC, Zubkov T, Yates JT (2004) J Phys Chem B 108:3614–3624

    Article  CAS  Google Scholar 

  38. Bertolini J, Imelik B (1979) Surf Sci 80:586–592

    Article  CAS  Google Scholar 

  39. Blyholder G, Neff LD (1962) J Phys Chem 66:1664–1667

    Article  CAS  Google Scholar 

  40. Joyner RW (1977) J Catal 50:176–180

    Article  CAS  Google Scholar 

  41. Elahifard MR, Pérez-Jigato M, Niemantsverdriet JW (2012) ChemPhysChem 13:89–91

    Article  CAS  Google Scholar 

  42. Li H-J, Chang C-C, Ho J-J (2011) J Phys Chem C 115:11045–11055

    Article  CAS  Google Scholar 

  43. Huo C-F, Ren J, Li Y-W, Wang J, Jiao H (2007) J Catal 249:174–184

    Article  CAS  Google Scholar 

  44. Ojeda M, Li A, Nabar R, Nilekar AU, Mavrikakis M, Iglesia E (2010) J Phys Chem C 114:19761–19770

    Article  CAS  Google Scholar 

  45. Elahifard MR, Pérez-Jigato M, Niemantsverdriet JW (2012) Chem Phys Lett 534:54–57

    Article  CAS  Google Scholar 

  46. de Smit E, Beale AM, Nikitenko S, Weckhuysen BM (2009) J Catal 262:244–256

    Article  Google Scholar 

  47. Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) J Catal 243:199–211

    Article  CAS  Google Scholar 

  48. Riedel T, Schulz H, Schaub G, Jun K-W, Hwang J-S, Lee K-W (2003) Top Catal 26:41–54

    Article  CAS  Google Scholar 

  49. Rao KRPM, Huggins FE, Mahajan V, Huffman GP, Bukur DB, Rao VUS (1994) Hyperfine Interact 93:1751–1754

    Article  CAS  Google Scholar 

  50. Petersen MA, van den Berg JA, Janse van Rensburg W (2010) J Phys Chem C 114:7863–7879

    Article  CAS  Google Scholar 

  51. Sorescu DC (2009) J Phys Chem C 113:9256–9274

    Article  CAS  Google Scholar 

  52. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2010) J Phys Chem C 114:1085–1093

    Article  CAS  Google Scholar 

  53. Pham TH, Duan X, Qian G, Zhou X, Chen D (2014) J Phys Chem C 118:10170–10176

    Article  CAS  Google Scholar 

  54. Olus Ozbek M, Niemantsverdriet JW (2014) J Catal 317:158–166

    Article  Google Scholar 

  55. Huo C-F, Li Y-W, Wang J, Jiao H (2009) J Am Chem Soc 131:14713–14721

    Article  CAS  Google Scholar 

  56. Cao D-B, Li Y-W, Wang J, Jiao H (2011) J Mol Catal A 346:55–69

    Article  CAS  Google Scholar 

  57. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  58. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  59. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413–7421

    Article  Google Scholar 

  60. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  61. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  62. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  63. Methfessel M, Paxton AT (1989) Phys Rev B 40:3616–3621

    Article  CAS  Google Scholar 

  64. Retief JJ (1999) Powder Diffr 14:130–132

    Article  CAS  Google Scholar 

  65. du Plessis HE, de Villiers JPR, Kruger GJ (2007) Z Kristallogr 222:211–217

    Article  Google Scholar 

  66. du Plessis HE, de Villiers JPR, Kruger GJ, Steuwer A, Brunelli M (2011) J Synchrotron Rad 18:266–271

    Article  Google Scholar 

  67. de Smit E, Cinquini F, Beale AM, Safonov OV, van Beek W, Sautet P, Weckhuysen BM (2010) J Am Chem Soc 132:14928–14941

    Article  Google Scholar 

  68. Steynberg PJ, van den Berg JA, Janse van Rensburg W (2008) J Phys Condens Matter 20(1–11):064238

    Article  CAS  Google Scholar 

  69. Jónsson H, Mills G, Jacobsen KW (1998) In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore

    Google Scholar 

  70. Zhao S, Liu X-W, Huo C-F, Li Y-W, Wang J, Jiao H (2012) J Catal 294:47–53

    Article  CAS  Google Scholar 

  71. Sorescu DC, Thompson DL, Hurley MM, Chabalowski CF (2002) Phy Rev B 66(035416):1–13

    Google Scholar 

  72. Bromfield TC, Curulla Ferre D, Niemantsverdriet JW (2005) ChemPhysChem 6:254–260

    Article  CAS  Google Scholar 

  73. Moon DW, Cameron S, Zaera F, Eberhardt W, Carr R, Bernasek SL, Gland JL, Dwyer DJ (1987) Surf Sci 180:L123–L128

    Article  CAS  Google Scholar 

  74. Sorescu DC (2008) J Phys Chem C 112:10472–10489

    Article  CAS  Google Scholar 

  75. Perdew KP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  76. Zhao Y-H, Liu J-Z, Su H-Y, Sun K, Li W-X (2014) ChemCatChem 6:1755–1762

    Article  CAS  Google Scholar 

  77. Ciobîcă IM, van Santen RA (2003) J Phys Chem B 107:3808–3812

    Article  Google Scholar 

Download references

Acknowledgments

We thank members of the Sasol Fischer–Tropsch Molecular Modelling study team for useful discussions during the course of this work, and we thank Ivan Bester (Information Management, Sasol) for infrastructure support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa A. Petersen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, M.A., van Rensburg, W.J. CO Dissociation at Vacancy Sites on Hägg Iron Carbide: Direct Versus Hydrogen-Assisted Routes Investigated with DFT. Top Catal 58, 665–674 (2015). https://doi.org/10.1007/s11244-015-0405-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0405-x

Keywords

Navigation