Log in

The Reduction of Various Nitrides under Hydrogen: Ni3N, Cu3N, Zn3N2 and Ta3N5

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Metal nitrides may be of interest as potential sources of activated nitrogen which can be reacted with target organic molecules. Accordingly, the reduction of nitrogen within Ni3N, Cu3N, Zn3N2 and Ta3N5 under a 1/3 Ar/H2 flow at elevated temperature has been determined as a simple test of lattice nitrogen reactivity. As anticipated by consideration of their stability, Ni3N and Cu3N are reduced completely at 250 °C with up to 30 % of their total lattice nitrogen yielding ammonia. The elimination of N2 results in the formation of pores which are particularly pronounced in the case of the denitrided Cu system. In the case of Zn3N2, the lattice nitrogen is less reactive with incomplete denitridation being observed at 400 °C and the amount of ammonia produced being 15 % of the total nitrogen available. Although Ta3N5 contains the least reactive nitrogen of the four samples studied, it can be regenerated by ammonolysis which is an important consideration in any envisaged application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Furimsky E (2003) Appl Catal A Gen 240:1

    Article  CAS  Google Scholar 

  2. Nagai M (2007) Appl Catal A Gen 322:178

    Article  CAS  Google Scholar 

  3. Alexander A-M, Hargreaves JSJ (2010) Chem Soc Rev 39:4338

    Article  Google Scholar 

  4. Mars P, van Krevelen DW (1954) Chem Eng Sci Spec Suppl 41:263

    Google Scholar 

  5. Contractor RM (1999) Chem Eng Sci 54:5627

    Article  CAS  Google Scholar 

  6. Tetenyi P (2006) In: Hargreaves JSJ, Jackson SD, Webb G (eds). Isotopes in heterogeneous catalysis. Imperial College Press, London, ISBN 978-1-86094-584-7 (Chapter 4)

  7. Garcia JM, Prinsloo FF, Niemantsverdriet JW (2009) Catal Lett 133:257

    Article  Google Scholar 

  8. **ao T, Hanif A, York APE, Nishizaka Y, Green MLH (2002) Phys Chem Chem Phys 4:4549

    Article  CAS  Google Scholar 

  9. Koerts T, van Santen RA (1991) J Chem Soc Chem Commun 1281

  10. Koerts T, Deelen MJA, van Santen RA (1992) J Catal 138:101

    Article  CAS  Google Scholar 

  11. Bielawa H, Hinrichsen O, Birkner A, Muhler M (2001) Angew Chemie Int Ed 40:1061

    Article  CAS  Google Scholar 

  12. Itoh M, Machida K, Hirose K, Sakata T, Mori H, Adachi G (1999) J Phys Chem B 103:9498

    Article  CAS  Google Scholar 

  13. Veitch GE, Bridgwood KL, Ley SV (2008) Org Lett 10:3623

    Article  CAS  Google Scholar 

  14. Mckay D, Hargreaves JSJ, Rico JL, Rivera JL, Sun XL (2008) J Solid State Chem 181:325

    Article  CAS  Google Scholar 

  15. Mckay D, Gregory DH, Hargreaves JSJ, Hunter SM, Sun X-L (2007) Chem Commun 29:3051

    Article  Google Scholar 

  16. Hargreaves JSJ, Mckay D (2009) J Mol Catal A Chem 305:125

    Article  CAS  Google Scholar 

  17. Hunter SM, Mckay D, Smith RI, Hargreaves JSJ, Gregory DH (2010) Chem Mater 22:2898

    Article  CAS  Google Scholar 

  18. Gregory DH, Hargreaves JSJ, Hunter SM (2011) Catal Lett 141:22

    Article  CAS  Google Scholar 

  19. Hunter SM (2012) Molybdenum nitrides: structural and reactivity studies. PhD thesis, University of Glasgow

  20. AlShalwi M, Hargreaves JSJ, Liggat JJ, Todd D (2012) Mater Res Bull 47:1251

    Article  CAS  Google Scholar 

  21. Baiker A, Maciejewski M (1984) J Chem Soc Faraday Trans 1(80):2331

    Google Scholar 

  22. Paniconi G, Stoeva Z, Smith RI, Dippo PC, Gallagher BL, Gregory DH (2008) J Solid State Chem 181:158

    Article  CAS  Google Scholar 

  23. Paniconi G, Stoeva Z, Doberstein H, Smith RI, Gallagher BL, Gregory DH (2007) Solid State Sci 9:907

    Article  CAS  Google Scholar 

  24. Gonzalez-Arrabal R, Gordillo N, Martin-Gonzalez MS, Ruiz-Bustos R, Agullo-Lopez F (2010) J Appl Phys 107:103513

    Article  Google Scholar 

  25. Henderson SJ, Hector AL (2006) J Solid State Chem 179:3518

    Article  CAS  Google Scholar 

  26. Cairns AG, Gallagher JG, Hargreaves JSJ, Mckay D, Rico JL, Wilson K (2010) J Solid State Chem 183:613

    Article  CAS  Google Scholar 

  27. Wakai Y, Hara T, Bando KK, Ichikuni N, Shimazu S (2009) Top Catal 52:1517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mrs Kim Wilson for all her assistance in performing nitrogen analysis and also Mr Jim Gallagher for his assistance with scanning electron microscopy. We are also very grateful to Huntsman Polyurethanes and the School of Chemistry, University of Glasgow for the provision of financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. J. Hargreaves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, AM., Hargreaves, J.S.J. & Mitchell, C. The Reduction of Various Nitrides under Hydrogen: Ni3N, Cu3N, Zn3N2 and Ta3N5 . Top Catal 55, 1046–1053 (2012). https://doi.org/10.1007/s11244-012-9890-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9890-3

Keywords

Navigation