Log in

CO2 Hydrogenation Studies on Co and CoPt Bimetallic Nanoparticles Under Reaction Conditions Using TEM, XPS and NEXAFS

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Cobalt and platinum–cobalt bimetallic alloy nanoparticles of uniform size distribution where prepared and supported on MCF-17 to produce a controlled and well-characterized model catalyst which was studied under reaction conditions during CO2 hydrogenation. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to elucidate the oxidation state of the catalyst under reaction conditions while the effect of reducing H2 gas on the composition and structure of the bimetallic PtCo nanoparticles was measured using ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and environmental transmission electron microscopy (ETEM). NEXAFS indicates that Pt aids the reduction of Co to its metallic state under relevant reaction conditions, while AP-XPS and ETEM indicate that Pt is enriched at the surface by exchange with subsurface layers which become Pt deficient—in agreement with the “Pt-like” selectivity seen during catalytic testing of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) Angew Chem 120:9025

    Article  Google Scholar 

  2. Tao F, Dag S, Wang LW, Liu Z, Butcher DR, Bluhm H, Salmeron M, Somorjai GA (2010) Science 327:850–853

    Article  CAS  Google Scholar 

  3. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Science 322:932

    Article  CAS  Google Scholar 

  4. Batley GE, Ekstrom A, Johnson DA (1974) J Catal 34:368

    Article  CAS  Google Scholar 

  5. Dees MJ, Ponec V (1989) J Catal 119:376

    Article  CAS  Google Scholar 

  6. Guczi L, Hoffer T, Zsoldos Z, Zyade S, Maire G, Garin F (1991) J Phys Chem 95:802

    Article  CAS  Google Scholar 

  7. Guczi L, Schay Z, Stefler G, Mizukami F (1999) J Mol Catal A Chem 141:177

    Article  CAS  Google Scholar 

  8. Khodakov AY, Lynch J, Bazin D, Rebours B, Zanier N, Moisson B, Chaumette P (1997) J Catal 168:16

    Article  CAS  Google Scholar 

  9. Morales F, Weckhuysen BM (2006) Catalysis 19:1–40

    Article  CAS  Google Scholar 

  10. Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A (1995) J Catal 156:85

    Article  CAS  Google Scholar 

  11. Vada S, Hoff A, Ådnanes E, Schanke D, Holmen A (1995) Top Catal 2:155

    Article  CAS  Google Scholar 

  12. Zsoldos Z, Guczi L (1992) J Phys Chem 96:9393

    Article  CAS  Google Scholar 

  13. Chinchen GC, Denny PJ, Parker DG, Short GD, Spencer MS, Waugh KC, Whan DA (1984) Prepr Am Chem Soc Div Fuel Chem 29:178

    CAS  Google Scholar 

  14. Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115–2117

    Article  CAS  Google Scholar 

  15. Zheng F, Alayoglu S, Guo J, Pushkarev V, Li Y, Glans P-A, Chen J-I, Somorjai G (2010) Nano Letters 11:847

    Article  Google Scholar 

  16. Schmidt-Winkel P, Lukens WW, Yang P, Margolese DI, Lettow JS, Ying JY, Stucky GD (2000) Chem Mater 12:686

    Article  CAS  Google Scholar 

  17. Salmeron M, Schlögl R (2008) Surf Sci Rep 63:169

    Article  CAS  Google Scholar 

  18. Tanuma S, Powell CJ, Penn DR (1994) Surf Interf Anal 21:165–176

    Article  CAS  Google Scholar 

  19. Tanuma S, Powell CJ, Penn DR (1991) Surf Interf Anal 17:911

    Article  CAS  Google Scholar 

  20. Yeh JJ, Lindau I (1985) At Data Nucl Data Tables 32:1–155

    Article  CAS  Google Scholar 

  21. Brundle CR, Chuang TJ, Rice DW (1976) Surf Sci 60:286

    Article  CAS  Google Scholar 

  22. Khodakov AY (2009) Catal Today 144:251

    Article  CAS  Google Scholar 

  23. Kobayashi M, Hidai S, Niwa H, Harada Y, Oshima M, Horikawa Y, Tokushima T, Shin S, Nakamori Y, Aoki T (2009) Phys Chem Chem Phys 11:8226

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Material Sciencess and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are grateful to Dr. James Ciston and Dr. Eric Stach for their assistance in ETEM at the Center for Functional Nanomaterials (CFN), Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor A. Somorjai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alayoglu, S., Beaumont, S.K., Zheng, F. et al. CO2 Hydrogenation Studies on Co and CoPt Bimetallic Nanoparticles Under Reaction Conditions Using TEM, XPS and NEXAFS. Top Catal 54, 778 (2011). https://doi.org/10.1007/s11244-011-9695-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11244-011-9695-9

Keywords

Navigation