Log in

Effect of surfactant in a modified sol on the physicochemical properties and photocatalytic activity of crystalline TiO2 nanoparticles

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

This study describes the effect of amphiphilic organic molecules (surfactants) in a sol on the physicochemical properties and photocatalytic activity of crystalline TiO2 nanoparticles prepared via a simple sol–gel route at high temperatures from 400 to 800 °C. Addition of polyoxyethylenesorbitan surfactant and polyethylene oxide and polypropylene oxide triblock copolymer as particle size inhibitors and pore directing agents into a stable titania sol affected the physicochemical properties of TiO2 nanoparticles such as their crystallographic structure, morphology, and defect structure. With the addition of the surfactants, the ratio of anatase and rutile crystal phases of TiO2 was controlled and an active anatase crystal phase was maintained during heat treatment up to 800 °C. Decrease in the sintering rate and inhibition in crystal growth were also observed, which resulted in higher surface area and inhibition of crystallite aggregation. Bulk defects in TiO2 were reduced while surface defects were increased as a result of the addition of surfactants. These physicochemical properties of TiO2 nanoparticles were correlated with photocatalytic degradation of 4-chlorophenol in water. The results revealed that high crystallinity, anatase crystal phase, high specific surface area, surface defects, and segregated morphology of TiO2 nanoparticles, which were induced by the addition of surfactants, were more advantageous for enhancing photocatalytic destruction of the model organic compound tested in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima K. Honda (1972) Nature 238 37 Occurrence Handle10.1038/238037a0 Occurrence Handle1:CAS:528:DyaE38XltVykurw%3D

    Article  CAS  Google Scholar 

  2. M.A. Fox M.T. Dulay (1993) Chem. Rev. 93 341 Occurrence Handle10.1021/cr00017a016 Occurrence Handle1:CAS:528:DyaK3sXmvFOnsw%3D%3D

    Article  CAS  Google Scholar 

  3. O. Legrini E. Oliveros A.M. Braun (1993) Chem. Rev. 93 671 Occurrence Handle10.1021/cr00018a003 Occurrence Handle1:CAS:528:DyaK3sXhsFektLc%3D

    Article  CAS  Google Scholar 

  4. E. Stathatos P. Lianos F. Monte ParticleDel D. Levy D. Tsiourvas (1997) Langmuir 13 4295 Occurrence Handle10.1021/la9701642 Occurrence Handle1:CAS:528:DyaK2sXksFCjsLs%3D

    Article  CAS  Google Scholar 

  5. S.-Y. Kwak S.H. Kim S.S. Kim (2001) Environ. Sci. Technol. 35 2388 Occurrence Handle10.1021/es0017099 Occurrence Handle1:CAS:528:DC%2BD3MXjtFGruro%3D

    Article  CAS  Google Scholar 

  6. D.D. Dionysiou A.A. Burbano M.T. Suidan I. Baudin J.M. Laîné (2002) Environ. Sci. Technol. 36 3834 Occurrence Handle10.1021/es0113605 Occurrence Handle1:CAS:528:DC%2BD38XlsFKms7k%3D

    Article  CAS  Google Scholar 

  7. K. Yoo, H. Choi and D.D. Dionysiou, Chem. Commun. (2004) 2000.

  8. K. Yoo H. Choi D.D. Dionysiou (2005) Catal. Commun. 6 259 Occurrence Handle10.1016/j.catcom.2005.01.010 Occurrence Handle1:CAS:528:DC%2BD2M**sFyitrk%3D

    Article  CAS  Google Scholar 

  9. H. Al-Ekabi, Proceedings of the Workshop on Advanced Oxidation Technologies: Fundamental and Environmental Applications (Albuquerque, New Mexico, 1999)

  10. Y.H. Hsien C.F. Chang Y.H. Chen S. Cheng (2001) Appl. Catal. B 31 241 Occurrence Handle10.1016/S0926-3373(00)00283-6 Occurrence Handle1:CAS:528:DC%2BD3MXjsleiu7g%3D

    Article  CAS  Google Scholar 

  11. K.M. Schindler M. Kunst (1990) J. Phys. Chem. B 94 8222 Occurrence Handle10.1021/j100384a045 Occurrence Handle1:CAS:528:DyaK3cXlvVaksLc%3D

    Article  CAS  Google Scholar 

  12. M.A. Fox M.T. Dulay (1993) Chem Rev. 93 54 Occurrence Handle10.1021/cr00017a016

    Article  Google Scholar 

  13. G.P. Fotou S. Pratsinis (1996) Chem. Eng. Commun. 151 251 Occurrence Handle10.1080/00986449608936551 Occurrence Handle1:CAS:528:DyaK28XmvVGisrY%3D

    Article  CAS  Google Scholar 

  14. L.-Q. Wu P. Huang N. Xu J. Shi (2000) J. Membr. Sci. 173 263 Occurrence Handle10.1016/S0376-7388(00)00369-0 Occurrence Handle1:CAS:528:DC%2BD3cXjt1ShtL0%3D

    Article  CAS  Google Scholar 

  15. B. Ohtani Y. Ogawa S.-I. Nishimoto (1997) J. Phys. Chem. B 101 3746 Occurrence Handle10.1021/jp962702+ Occurrence Handle1:CAS:528:DyaK2s**slyru7k%3D

    Article  CAS  Google Scholar 

  16. K.Y. Jung S.B. Park (1999) J. Photochem. Photobiol. A 127 117 Occurrence Handle10.1016/S1010-6030(99)00132-X Occurrence Handle1:CAS:528:DyaK1MXmtlSlt7o%3D

    Article  CAS  Google Scholar 

  17. J. Yang J.M.F. Ferreira (1998) Mater. Lett. 36 320 Occurrence Handle10.1016/S0167-577X(98)00042-1 Occurrence Handle1:CAS:528:DyaK1cXkvF2rtL4%3D

    Article  CAS  Google Scholar 

  18. B. Tryba A.W. Morawski M. Inagaki (2003) Appl. Catal. B 46 203 Occurrence Handle10.1016/S0926-3373(03)00214-5 Occurrence Handle1:CAS:528:DC%2BD3sXnvVCgsb4%3D

    Article  CAS  Google Scholar 

  19. S. Vemury S.E. Pratsinis (1995) J. Am. Ceram. Soc. 78 2984 Occurrence Handle10.1111/j.1151-2916.1995.tb09074.x Occurrence Handle1:CAS:528:DyaK2MXptFyrtLo%3D

    Article  CAS  Google Scholar 

  20. P. Yang D. Zhao D.I. Margolese B.F. Chmelka G.D. Stucky (1998) Nature 396 152 Occurrence Handle10.1038/24132 Occurrence Handle1:CAS:528:DyaK1cXnslalsLc%3D

    Article  CAS  Google Scholar 

  21. E.L. Crepaldi G.J.d.A.A. Soler-Illia D. Grosso F. Cagnol F. Ribot C. Sanchez (2003) J. Am. Chem. Soc. 125 9770 Occurrence Handle10.1021/ja030070g Occurrence Handle1:CAS:528:DC%2BD3sXlsVGhtLo%3D

    Article  CAS  Google Scholar 

  22. E.L. Crepaldi, G.J.d.A.A. Soler-Illia, D. Grosso, P.-A. Albouy and C. Sanchez, Chem. Commun. (2001) 1582.

  23. F. Bosc A. Ayral P.-A. Albouy C. Guizard (2003) Chem. Mater. 15 2463 Occurrence Handle10.1021/cm031025a Occurrence Handle1:CAS:528:DC%2BD3sXjsleis7c%3D

    Article  CAS  Google Scholar 

  24. F. Bosc A. Ayral P.-A. Albouy L. Datas C. Guizard (2004) Chem Mater. 16 2208 Occurrence Handle10.1021/cm049893a Occurrence Handle1:CAS:528:DC%2BD2cXjtlOksbg%3D

    Article  CAS  Google Scholar 

  25. N. Idrissi-Kandri A. Ayral M. Klotz P.-A. Albouny A.E. Mansouri A. Lee ParticleVan der C. Guizard (2001) Mater. Lett. 50 57 Occurrence Handle10.1016/S0167-577X(00)00413-4 Occurrence Handle1:CAS:528:DC%2BD3MXmtFamtr8%3D

    Article  CAS  Google Scholar 

  26. E. Stathatos P. Lianos C. Tsakiroglou (2004) Microporous Mesoporous Mater. 75 255 Occurrence Handle10.1016/j.micromeso.2004.07.006 Occurrence Handle1:CAS:528:DC%2BD2cXoslSmtL8%3D

    Article  CAS  Google Scholar 

  27. Y. Takahashi Y. Matsuoka (1988) J. Mater. Sci. 23 2259 Occurrence Handle10.1007/BF01115798 Occurrence Handle1:CAS:528:DyaL1cXlsFCqsro%3D

    Article  CAS  Google Scholar 

  28. E. Prouzet F. Cot G. Nabias A. Larbot P. Kooyman T.J. Pinnavaia (1999) Chem. Mater. 11 1498 Occurrence Handle10.1021/cm9810281 Occurrence Handle1:CAS:528:DyaK1M**vVWnur8%3D

    Article  CAS  Google Scholar 

  29. M. Klotz, N. Idrissi-Kandri, A. Ayral and C. Guizard, Mater. Res. Soc. Symp. Proc. (2000) 628.

  30. V.M. Nace (Eds) (1996) Nonionic Surfactants: Polyoxyalkylene Block Copolymers Marcel Dekker New York

    Google Scholar 

  31. P. Alexandridis, J.F. Holzwarth and T.A. Hatton, Macromolecules 27 (1994) 2414

  32. S. Günter (Eds) (2004) Nanoparticles Wiley-VCH Weinheim

    Google Scholar 

  33. J.Z. Zhang Z.-L. Wang J. Liu S. Chen G.-Y. Liu (2003) Self-Assembled Nanostructures Kluwer/Plenum New York

    Google Scholar 

  34. X. Ju P. Huang N. Xu J. Shi (2002) J. Membr. Sci. 202 63 Occurrence Handle10.1016/S0376-7388(01)00722-0 Occurrence Handle1:CAS:528:DC%2BD38Xjt1Crs7o%3D

    Article  CAS  Google Scholar 

  35. D. Eder R. Kramer (2003) Phys. Chem. Chem. Phys. 5 1314 Occurrence Handle10.1039/b210004e Occurrence Handle1:CAS:528:DC%2BD3sXhsFKrsLs%3D

    Article  CAS  Google Scholar 

  36. R.A. Spurr W. Myers (1957) Anal. Chem. 29 760 Occurrence Handle10.1021/ac60125a006 Occurrence Handle1:CAS:528:DyaG2sXmtFKhsg%3D%3D

    Article  CAS  Google Scholar 

  37. S. Nakade M. Matsuda S. Kambe Y. Saito T. Kitamura T. Sakata Y. Wada H. Mori S. Yanagida (2002) J. Phys. Chem. B 106 10004 Occurrence Handle10.1021/jp020051d Occurrence Handle1:CAS:528:DC%2BD38Xmsl2quro%3D

    Article  CAS  Google Scholar 

  38. R.R. Bacsa J. Kiwi (1998) Appl. Catal. B 16 19 Occurrence Handle10.1016/S0926-3373(97)00058-1 Occurrence Handle1:CAS:528:DyaK1cXhvVyhtLY%3D

    Article  CAS  Google Scholar 

  39. R.J. Young (1981) Introduction to Polymers Chapman and Hall New York

    Google Scholar 

  40. R.D. Shannon J.A. Pask (1965) J. Am. Ceram. Soc. 48 391 Occurrence Handle10.1111/j.1151-2916.1965.tb14774.x Occurrence Handle1:CAS:528:DyaF28XlsVw%3D

    Article  CAS  Google Scholar 

  41. S. Hishita M. Takata H. Yanagida (1978) Yogyo-Kyokai-Shi 86 621

    Google Scholar 

  42. J.C. Yu J. Yu W. Ho Z. Jiang L. Zhang (2002) Chem. Mater. 14 3808 Occurrence Handle10.1021/cm020027c Occurrence Handle1:CAS:528:DC%2BD38XmtVShtrw%3D

    Article  CAS  Google Scholar 

  43. T. Gestel ParticleVan C. Vandecasteele A. Buekenhoudt C. Dortremont J. Luyten R. Leysen B.V. Bruggen Particleder G. Maes (2002) J. Membr. Sci. 207 73 Occurrence Handle10.1016/S0376-7388(02)00053-4

    Article  Google Scholar 

  44. M.M. Yusuf H. Imai H. Hirashima (2003) J. Sol-Gel Sci. Technol. 28 97 Occurrence Handle10.1023/A:1025645305557 Occurrence Handle1:CAS:528:DC%2BD3sXntFanurY%3D

    Article  CAS  Google Scholar 

  45. M. Niederberger M.H. Bartl G.D. Stucky (2002) Chem. Mater. 14 4364 Occurrence Handle10.1021/cm021203k Occurrence Handle1:CAS:528:DC%2BD38XntlagtL8%3D

    Article  CAS  Google Scholar 

  46. A. Mersmann (Eds) (2001) Crystallization Technology Handbook Marcel Dekker, Inc New York

    Google Scholar 

  47. D.C. William (2003) Materials Science and Engineering: An Introduction John Wiley and Son, Inc New York

    Google Scholar 

  48. T. Torimoto R.J. Fox SuffixIII M.A. Fox (1996) J. Electrochem. Soc. 143 3712 Occurrence Handle10.1149/1.1837277 Occurrence Handle1:CAS:528:DyaK28XnsVCqt7g%3D

    Article  CAS  Google Scholar 

  49. R.F. Howe M. Gratzel (1985) J. Phys. Chem. 89 4495 Occurrence Handle10.1021/j100267a018 Occurrence Handle1:CAS:528:DyaL2MXlsFWnt78%3D

    Article  CAS  Google Scholar 

  50. T. Nakaoka Y. Nosaka (1997) J. Photochem. Photobiol. A 110 299 Occurrence Handle10.1016/S1010-6030(97)00208-6 Occurrence Handle1:CAS:528:DyaK2sXnslKntr4%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionysios D. Dionysiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Stathatos, E. & Dionysiou, D.D. Effect of surfactant in a modified sol on the physicochemical properties and photocatalytic activity of crystalline TiO2 nanoparticles. Top Catal 44, 513–521 (2007). https://doi.org/10.1007/s11244-006-0099-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0099-1

Keywords

Navigation