Log in

Experimental Study and Fractal Analysis of Heterogeneity in Naturally Fractured Rocks

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Capillary pressure curves of six low porosity and low permeability core samples from The Geysers geothermal field were measured using the mercury-intrusion approach to characterize the heterogeneity of rock. One high permeability Berea sandstone core sample was analyzed similarly, for comparison. The maximum pressure of mercury intruded into the rock was about 200 MPa to reach the extremely small pores. Experimental data showed that the capillary pressure curves of The Geysers rock are very different from that of the Berea sandstone. It was found that the frequently used capillary pressure models could not be used to represent the data from The Geysers rock samples. This might be because of the fractures in the rock. To this end, a fractal technique was proposed to model the features of the capillary pressure curves and to characterize the difference in heterogeneity between The Geysers rock and Berea sandstone. The results demonstrated that the rock from The Geysers geothermal field was fractal over a scaling range of about five orders of magnitude. The values of the fractal dimension of all the core samples (six from The Geysers and one Berea sandstone) calculated using the proposed approach were in the range from 2 to 3. The results showed that The Geysers rock with a high density of fractures had a greater fractal dimension than Berea sandstone which is almost without fractures. This shows that The Geysers rock has greater heterogeneity, as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

Euclidean dimension

D f :

Fractal dimension

l :

Length of a capillary tube

N(r):

Number of the unit needed to fill the fractal object

P c :

Capillary pressure

p e :

Entry capillary pressure

r :

Radius of the unit

S Hg :

Mercury saturation

S w :

Wetting-phase saturation

\({S_{\rm w}^\ast}\) :

Normalized wetting-phase saturation

S wr :

Residual saturation of the wetting-phase

V Hg :

Cumulative volume of mercury intruded into rock

V p :

Pore volume

θ :

Contact angle

σ :

Interfacial tension

λ:

Pore size distribution index

References

  • Angulo, R.F., Gonzalez, H.: Fractal dimensions from mercury intrusion capillary tests, SPE 23695. Presented at the 2nd Latin American petroleum engineering conference of SPE held in Caracas, Venezuela, 8–11 Mar 1992

  • Avnir D., Biham O., Lida D., Malcai O.: Is the geometry of nature fractal. Science 279, 477–482 (1998). doi:10.1126/science.279.5347.39

    Article  Google Scholar 

  • Babadagli, T., Develi, K.: Fractal analysis of natural and synthetic fracture surfaces of geothermal reservoir rocks. In: Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000

  • Beckner, B.L.: Improved modeling of imbibition matrix/fracture fluid transfer in double porosity simulators. PhD dissertation in Petroleum Engineering, Stanford University (1990)

  • Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media. Colorado State University, Hydro Paper No. 5 (1964)

  • Darcel C., Bour O., Davy P., de Dreuzy J.R.: Connectivity properties of two-dimensional fracture networks with stochastic fractal correlation. Water Resour. Res. 39(10), 1272 (2003). doi:10.1029/2002WR001628

    Article  Google Scholar 

  • Firoozabadi A., Hauge J.: Capillary pressure in fractured porous media. JPT 42, 784–791 (1990)

    Google Scholar 

  • Firoozabadi, A., Markeset, T.: An experimental study of capillary and gravity crossflow in fractured porous media, SPE 24918. Presented at the 67th SPE annual technical conference, Washington, DC, 4–7 Oct 1992

  • Friesen W.I., Mikula R.J.: Fractal dimensions of coal particles. J. Colloid Interface Sci. 120(1), 263–271 (1987). doi:10.1016/0021-9797(87)90348-1

    Article  Google Scholar 

  • Gilman, J.R., Bowzer, J.L., Rothkopf, B.W.: Application of short-radius horizontal boreholes in the naturally fractured yates field, SPE 28568. Presented at the 69th SPE annual technical conference, New Orleans, LA (1994)

  • Hansen J.P., Skjeltorp A.T.: Fractal pore space and rock permeability implications. Phys. Rev. B 38(4), 2635–2638 (1988). doi:10.1103/PhysRevB.38.2635

    Article  Google Scholar 

  • Katz A.J., Thompson A.H.: Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54, 1325–1328 (1985). doi:10.1103/PhysRevLett.54.1325

    Article  Google Scholar 

  • Kazemi H., Merrill L.S.: Numerical simulation of water imbibition in fractured cores. SPE J. 19(3), 175–182 (1979)

    Google Scholar 

  • Krohn C.E.: Fractal measurements of sandstones, shales, and carbonates. J. Geophys. Res. 93(B4), 3297–3305 (1988). doi:10.1029/JB093iB04p03297

    Article  Google Scholar 

  • Lenormand, R.: Gravity-assisted inert gas injection: micromodel experiments and model based on fractal roughness. In: The European Oil and Gas Conference, Altavilla Milica, Palermo, Sicily, 9–12 Oct 1990

  • Li, K.: Theoretical development of the Brooks-Corey capillary pressure model from fractal modeling of porous media, SPE 89429. In: Proceedings of the SPE/DOE Fourteenth Symposium on Improved Oil Recovery held in Tulsa, Oklahoma, 17–21 Apr 2004

  • Li K., Horne R.N.: Fractal modeling of capillary pressure curves for The Geysers rocks. Geothermics 35, 198–207 (2006). doi:10.1016/j.geothermics.2006.2.001

    Article  Google Scholar 

  • Long J.C.S., Billaux D.: From field data to fracture network modeling: an example incorporating spatial structure. Water Resour. Res. 23, 1201–1216 (1987). doi:10.1029/WR023i007p01201

    Article  Google Scholar 

  • Margolin G., Berkowitz B., Scher H.: Structure, flow, and generalized conductivity scaling in fracture networks. Water Resour. Res. 34, 2103–2121 (1998). doi:10.1029/98WR01648

    Article  Google Scholar 

  • Moore J.N., Norman D.I., Kennedy B.M.: Fluid inclusion gas compositions from an active magmatic–hydrothermal system: a case study of The Geysers geothermal field, USA. Chem. Geol. 173, 3–30 (2001). doi:10.1016/S0009-2541(00)00265-5

    Article  Google Scholar 

  • Perfect E., Kenst A.B., Díaz-Zorita M., Grove J.H.: Fractal analysis of soil water desorption data collected on disturbed samples with water activity meters. Soil Sci. Soc. Am. J. 68, 1177–1184 (2004)

    Article  Google Scholar 

  • Pérez Bernal J.L., Bello López M.A.: The fractal dimension of stone pore surface as weathering descriptor. Appl. Surf. Sci. 161, 47–53 (2000). doi:10.1016/S0169-4332(00)00031-3

    Article  Google Scholar 

  • Perrier E., Rieu M., Sposito G., de Marsily G.: Models of the water retention curve for soils with a fractal pore size distribution. Water Resour. Res. 32(10), 3025–3032 (1996). doi:10.1029/96WR01779

    Article  Google Scholar 

  • Purcell W.R.: Capillary pressures—their measurement using mercury and the calculation of permeability. Trans. AIME 186, 39–48 (1949)

    Google Scholar 

  • Rieu M., Sposito G.: Fractal fragmentation, soil porosity, and soil water properties: I. Theory. Soil Sci. Soc. Am. J. 55, 1231–1238 (1991a)

    Google Scholar 

  • Rieu M., Sposito G.: Fractal fragmentation, soil porosity, and soil water properties: II. Applications. Soil Sci. Soc. Am. J. 55, 1239–1244 (1991b)

    Google Scholar 

  • Sammis, C.G., An, L., Ershaghi, I.: Determining the 3-D fracture structure in The Geysers geothermal reservoirs. In: Proceedings of 21st Workshop on Geothermal Reservoir Engineering, Stanford, California (1992)

  • Schumer R., Benson D.A., Meerschaert M.M., Baeumer B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39(10), 1296 (2003). doi:10.1029/2003WR002141

    Article  Google Scholar 

  • Shen, P., Li, K.: A new method for determining the fractal dimension of pore structures and its application. In: Proceedings of the 10th Offshore South East Asia Conference, Singapore, 6–9 Dec 1994

  • Shen, P., Li, K.: Quantitative description for the heterogeneity of pore structure by using mercury capillary pressure curves, SPE 29996. In: Proceedings of the SPE International Meeting held in Bei**g, China, 14–17 Nov 1995

  • Tateno, M., Watanabe, K., Nakatsuka, K., Takahashi, H.: Fractal characterization of the fracture distribution and the permeability in geothermal reservoirs. In: Proceedings of the World Geothermal Congress, Florence, Italy, 18–31 May 1995

  • Timlin D.J., Ahuja L.R., Pachepsky Y., Williams R.D., Gimenez D., Rawls W.: Use of Brooks-Corey parameters to improve estimates of saturated conductivity from effective porosity. Soil Sci. Soc. Am. J. 63, 1086–1092 (1999)

    Google Scholar 

  • Tsuchiya, N., Nakatsuka, K.: Fractal analysis and modeling of a two-dimensional fracture network. In: Proceedings of the GRC 1995 annual meeting, Reno, USA, 8–11 Oct 1995

  • Tyler S.W., Wheatcraft S.W.: Fractal processes in soil water retention. Water Resour. Res. 26, 1047–1054 (1990)

    Article  Google Scholar 

  • Wong P., Howard J., Lin J.S.: Surface roughening and the fractal nature of rocks. Phys. Rev. Lett. 57, 637–640 (1986). doi:10.1103/PhysRevLett.57.637

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, K., Horne, R.N. Experimental Study and Fractal Analysis of Heterogeneity in Naturally Fractured Rocks. Transp Porous Med 78, 217–231 (2009). https://doi.org/10.1007/s11242-008-9295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-008-9295-8

Keywords

Navigation