Log in

A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In plants, transcriptional regulation is the most important tool for modulating flavonoid biosynthesis. The basic helix-loop-helix transcription factors are only one example how then flavonoid pathway is regulated. There are other transcription factors as well. In this study, the codon-optimized VvbHLH1 gene from grape was chemically synthesized. Overexpression of VvbHLH1 significantly increased the accumulation of flavonoids and enhanced salt and drought tolerance in transgenic Arabidopsis thaliana plants. Real-time quantitative PCR analysis showed that overexpression of VvbHLH1 resulted in the up-regulation of genes involved in flavonoid biosynthesis, abscisic acid (ABA) signaling pathway, proline biosynthesis, stress responses and ROS scavenging under salt and drought stresses. Further analyses under salt and drought stresses showed significant increases of ABA and proline content, superoxide dismutase and peroxidase activities, as well as significant reduction of hydrogen peroxide (H2O2) and malonaldehyde content. The results demonstrate the explicit role of VvbHLH1 in conferring salt and drought tolerance by increasing the accumulation of flavonoids and ABA signalling in transgenic A. thaliana. The VvbHLH1 gene has the potential to be used to increase the content of valuable flavonoids and improve the tolerance to abiotic stresses in A. thaliana and other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

ABA:

Abscisic acid

bHLH:

Basic helix-loop-helix transcription factor

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

ORF:

Open reading frame

PEG:

Polyethylene glycol

POD:

Peroxidase

PTDS:

PCR-based two-step DNA synthesis

qRT-PCR:

Real-time quantitative PCR

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by absiscic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  CAS  PubMed  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Alia MP, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

    Article  CAS  PubMed  Google Scholar 

  • Babu RC, Zhang JX, Blum A, Ho THD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress Plant. Growth Regul. doi:10.1007/s10725-015-0113-3

    Google Scholar 

  • Bao AK, Wang SM, Wu GQ, ** JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335

    Article  CAS  PubMed  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    Article  CAS  PubMed  Google Scholar 

  • Gal TZ, Glazer I, Koltai H (2004) An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Lett 577:21–26

    Article  CAS  PubMed  Google Scholar 

  • Ganguly M, Datta K, Roychoudhury A, Gayen D, Sengupta DN, Datta SK (2012) Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance. Plant Signal Behav 7:502–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao JJ, Zhang Z, Peng RH, **ong AS, Xu J, Zhu B, Yao QH (2011a) Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Mol Biol Rep 38:205–211

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Yuan L, Zhai H, Liu CL, He SZ, Liu QC (2011b) Transgenic sweetpotato plants expressing an LOS5 gene are tolerant to salt stress. Plant Cell Tiss Org 107:205–213

    Article  CAS  Google Scholar 

  • Gao WD, Bai S, Li QM, Gao CQ, Liu GF, Li GD, Tan FL (2013) Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra). PLoS One 8:e67462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Zhou W, Lu Z, Li H, Li H, Gao F (2015) Isolation and functional analysis of chalcone isomerase gene from purple-fleshed sweet potato. Plant Mol Biol Rep 33:1451–1463

    Article  CAS  Google Scholar 

  • Hannum SM (2004) Potential impact of strawberries on human health: a review of the science. Crit Rev Food Sci Nutr 44:1–17

    Article  CAS  PubMed  Google Scholar 

  • He L, Gao CQ, Wang YC, Wu YJ, Liu ZH (2013) A basic helix-loop-helix gene from poplar is regulated by a basic leucine-zipper protein and is involved in the ABA-dependent signaling pathway. Plant Mol Biol Rep 31:344–351

    Article  Google Scholar 

  • Hou DX, Fujii M, Terahara N, Yoshimoto M (2004) Molecular mechanisms behind the chemopreventive effects of anthocyanidins. J Biomed Biotechnol 2004:321–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia Z, Tang M, Wu J (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Koca H, Ozdemir F, Turkan I (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant 50:745–748

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  PubMed  Google Scholar 

  • Li H, Flachowsky H, Fischer TC, Hanke MV, Forkmann G, Treutter D, Schwab W, Hoffmann TS, Szankowski I (2007) Maize Lc Transcription Factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ma H, Huang H, Li D, Yao S (2013) Natural anthocyanins from phytoresources and their chemical researches. Nat Prod Res 27:456–469

    Article  CAS  PubMed  Google Scholar 

  • Liang CY, ** Y, Shu J, Li J, Yang JL (2004) Construction of a BAC library of Physcomitrella patens and isolation of a LEA gene. Plant Sci 167:491–498

    Article  CAS  Google Scholar 

  • Liu XX, Zhai SM, Zhao YJ, Sun BC, Liu C, Yang AF, Zhang JR (2013) Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize. Plant Cell Environ 36:1037–1055

    Article  CAS  PubMed  Google Scholar 

  • Liu DG, He SZ, Zhai H, Wang LJ, Zhao Y, Wang B, Li RJ, Liu QC (2014) Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell Tiss Org 117:1–16

    Article  Google Scholar 

  • Liu DG, He SZ, Song XJ, Zhai H, Liu N, Zhang DD, Ren ZT, Liu QC (2015a) IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell Tiss Org 120:701–715

    Article  CAS  Google Scholar 

  • Liu Y, Ji X, Nie X, Qu M, Zheng L, Tan Z, Zhao H, Huo L, Liu S, Zhang B, Wang Y (2015b) Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol 207:692–709

    Article  CAS  PubMed  Google Scholar 

  • Lou XM, Yao QH, Zhang Z, Peng RH, **ong AS, Wang KK (2007) Expression of human hepatitis B virus large surface antigen gene in transgenic tomato. Clin Vaccine Immunol 14:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lurie S, Fallika E, Handrosa A, Shapirab R (1997) The possible involvement of peroxidase in resistance to Botrytis cinerea in heat treated tomato fruit. Physiol Mol Plant Pathol 50:141–149

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Mayor A, Pineda B, Garcia-Abellán JO, Antón T, Garcia-sogo B, Sanchez-Bel P, Flores FB, Atarés A, Angosto T, Pintor-Toro JA, Moreno V, Bolarin MC (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol 169:459–468

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Porcel R, Azcón R, Ruiz-Lozano JM (2005) Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. J Exp Bot 56:1933–1942

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Gao F, Shen G, Li C, Han X, Zhao Q, Zhao D, Hua X, Pang Y (2013) Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata. PLoS One 8:e70665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Sun S, Luo S, Zhang J, **ao X, Zhang L, Wang F, Liu S (2014) Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum. Plant Cell Rep 33:669–680

    Article  CAS  PubMed  Google Scholar 

  • Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Park E, Choi G (2007) PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49:981–994

    Article  CAS  PubMed  Google Scholar 

  • Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz G, Jiménez-Bremont JF (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Bioch 46:82–92

    Article  CAS  Google Scholar 

  • Singh S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sci 14:2601–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86:94–105

    Article  CAS  Google Scholar 

  • Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABII and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Fan W, Li H, Yang J, Huang J, Zhang P (2013) Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One 8:e78484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong CC, Li HB, Cheng KW, Chen F (2006) A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 97:705–711

    Article  CAS  Google Scholar 

  • **ong AS, Yao QH, Peng RH, Li X, Fan HQ, Cheng ZM, Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCRbased two-step DNA synthesis method for long gene sequence. Nucleic Acids Res 32:e98

    Article  PubMed  PubMed Central  Google Scholar 

  • **ong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, Cheng ZM, Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1:791–797

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yang SJ, Vanderbeld B, Wan JX, Huang YF (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Nanjo T, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Stress-responsive and developmental regulation of Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochem Biophys Res Commun 261:766–772

    Article  CAS  PubMed  Google Scholar 

  • Zhai H, Wang FB, Si ZZ, Huo JX, **ng L, An YY, He SZ, Liu QC (2015) A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol J. doi:10.1111/pbi.12402

    Google Scholar 

  • Zhang X, Henriques R, Lin SS (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67

    Article  PubMed  Google Scholar 

  • Zhao P, Liu F, Ma M, Gong J, Wang Q, Jia P, Zheng G, Liu H (2011) Overexpression of AtLEA3-3 confers resistance to cold stress in Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana. Mol Biol 45:851–862

    Google Scholar 

  • Zhao Q, Zhang H, Wang T, Chen SX, Dai SJ (2013) Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics 82:230–253

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Liu CF, Liu A, Zou D, Chen XB (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628–635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Key Project Fund of the Shanghai Municipal Committee of Agriculture (zhongzi2014-2) and National Natural Science Foundation (31200076).

Author contribution

Conceived and designed the experiments: QHY FBW. Performed the experiments: FBW DHC HZ RHP. Analyzed the data: FBW DHC HZ. Wrote the paper: FBW QHY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanhong Yao.

Additional information

Feibing Wang and Hong Zhu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhu, H., Chen, D. et al. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana . Plant Cell Tiss Organ Cult 125, 387–398 (2016). https://doi.org/10.1007/s11240-016-0953-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-0953-1

Keywords

Navigation