Log in

Sonication and ultrasound: impact on plant growth and development

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plant biotechnology, and plant tissue culture in particular, could benefit from new means to stimulate plant growth and development. Although the number of studies is still limited, there is evidence that sonication using low frequencies of sound (as little as a few dozen Hz) to as high as ultrasound (several dozen kHz) may increase organogenesis. In this brief review, we look at those examples in detail and explore how sound influences growth and development. Where available, we try to offer a mechanism by which sound affects or influences plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

GUS:

β-Glucuronidase

Hz:

Hertz

ROS:

Reactive oxygen species

SAAT:

Sonication-assisted Agrobacterium-mediated transformation

References

  • Ananthakrishnan G, **a X, Amutha S, Singer S, Muruganantham M, Yablomsky S, Fisher E, Gaba V (2007) Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro. Plant Cell Rep 26:267–276

    Article  PubMed  CAS  Google Scholar 

  • Beranová M, Rakouský S, Vávrová Z, Skalický T (2008) Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell Tiss Organ Cult 94:253–259

    Article  Google Scholar 

  • Chen B, Huang J, Wang J, Huang L (2008) Ultrasound effects on the antioxidative defense systems of Porphyridium cruentum. Colloids Surf B: Biointerfaces 61:88–92

    Article  PubMed  CAS  Google Scholar 

  • Chopra R, Aparna P, Saini R (2012) Use of sonication and vacuum infiltration for Agrobacterium-mediated transformation of an Indian lentil (Lens culinaris Medik.) cultivar. Sci Hortic 143:127–134

    Article  CAS  Google Scholar 

  • Collins ME, Foreman JEK (2001) The effect of sound on the growth of plants. Can Acoust 29(2):3–8

    Google Scholar 

  • Creath K, Schwartz GE (2004) Measuring effects of music, noise, and healing energy using a seed germination bioassay. J Alt Compl Med 10(1):113–122

    Article  Google Scholar 

  • Dutta I, Kottackal M, Tumimbang E, Tajima H, Zaid A, Blumwald E (2013) Sonication-assisted efficient Agrobacterium-mediated genetic transformation of the multipurpose woody desert scrub Leptadenia pyrotechnica. Plant Cell Tiss Organ Cult 112:289–301

    Article  CAS  Google Scholar 

  • Gagliano M (2013) Green symphonies: a call for studies on acoustic communication in plants. Behav Ecol 24(4):789–796

    Article  PubMed Central  PubMed  Google Scholar 

  • Gagliano M, Renton M (2013) Love thy neighbour: facilitation through an alternative signalling modality in plants. BMC Ecol 13:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Gagliano M, Renton M, Duvdevani N, Timmins M, Mancuso S (2012a) Acoustic and magnetic communication in plants. Plant Sig Behav 7(10):1346–1348

    Article  Google Scholar 

  • Gagliano M, Mancuso S, Robert D (2012b) Towards understanding plant bioacoustics. Trends Plant Sci 17:323–325

    Article  PubMed  CAS  Google Scholar 

  • George EF, Hall MA, De Klerk G-J (2008) Plant propagation by tissue culture. vol 1. Background, 3rd (edn), Springer, Dordrecht, p 501

  • Horn P, Nakai RC (1997) Inside Canyon de Chelley (audio recording). Canyon Records, Phoenix

    Google Scholar 

  • Jia Y, Wang B, Wang X, Wang D, Duan C, Yoshiharu T, Akio S (2003) Effect of sound wave on the metabolism of chrysanthemum roots. Coll Surf B: Biointerfaces 29:115–118

    Article  CAS  Google Scholar 

  • Laschimke R, Burger M, Vallen H (2006) Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension. J Plant Physiol 163:996–1007

    Article  PubMed  CAS  Google Scholar 

  • Liu YY, Yoshikoshi A, Wang BC, Sakanishi A (2003a) Influence of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare callus. Coll Surf B: Biointerfaces 27:287–293

    Article  CAS  Google Scholar 

  • Liu YY, Takatsuki H, Yoshikoshi A, Wang BC, Sakanishi A (2003b) Effects of ultrasound on the growth and vacuolar H+-ATPase activity of Aloe arborescens callus cells. Coll Surf B: Biointerfaces 32:105–116

    Article  CAS  Google Scholar 

  • Mason TJ (2007) Developments in ultrasound—non-medical. Progr Biophys Mol Biol 93:166–175

    Article  Google Scholar 

  • Measures M, Weinberger P (1968) The effect of two audible sound frequencies on the germination and growth of a spring and winter wheat. Can J Bot 46:1151–1158

    Article  Google Scholar 

  • Measures M, Weinberger P (1969) The effect of four audible sound frequencies on the growth of Marquis Spring wheat. Can J Bot 48:659–662

    Article  Google Scholar 

  • Murashige M, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakai RR (1992) Songs of rainbow World (audio recording). Canyon Records, Phoenix

    Google Scholar 

  • Nyborg WL (1982) Ultrasonic microstreaming and related phenomena. Br J Cancer Suppl 5:156–160

    PubMed Central  PubMed  CAS  Google Scholar 

  • Otani Y, Chin DP, Mii M (2013) Establishment of Agrobacterium-mediated genetic transformation system in Dahlia. Plant Biotechnol 30:135–139

    Article  CAS  Google Scholar 

  • Qi L, Teng G, Hou T, Zhu B, Liu X (2010) Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse. In: Li DL, Zhao CJ (eds) Computer and computing technologies in agriculture III. IFIP advances in information and communication technology, vol 317, Springer, New Jersey, pp 449–454

  • Raichel DR (2006) The science and applications of acoustics, 2nd edn. Springer, New Jersey, p 660

    Google Scholar 

  • Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27:298–306

    Article  PubMed  CAS  Google Scholar 

  • Russowski D, Maurmann N, Rech SB, Fett-Neto AG (2013) Improved production of bioactive valepotriates in whole-plant liquid cultures of Valeriana glechomifolia. Ind Crops Prod 46:253–257

    Article  CAS  Google Scholar 

  • Safari M, Ghanati F, Behmanesh M, Hajnorouzi A, Nahidian B, Mina G (2013) Enhancement of antioxidant enzymes activity and expression of CAT and PAL genes in hazel (Corylus avellana L.) cells in response to low-intensity ultrasound. Acta Physiol Plant 35:2847–2855

    Article  CAS  Google Scholar 

  • Shao H, Li B, Wang B, Tang K, Liang Y (2008) A study of differentially expressed gene screening of Chrysanthemum plants under sound stress. CR Biol 331:329–333

    Article  CAS  Google Scholar 

  • Shrestha BR, Chin DP, Tokuhara K, Mii M (2007) Efficient production of transgenic plants of Vanda through sonication-assisted Agrobacterium-mediated transformation of protocorm-like bodies. Plant Biotechnol 24:429–434

    Article  CAS  Google Scholar 

  • Song L, Zhao D, Wu Y, Tian X (2009) A simple seed transformation method for obtaining transgenic Brassica napus plants. Agric Sci China 8(6):658–663

    Article  CAS  Google Scholar 

  • Sujatha M, Vijay S, Vasavi S, Veera Reddy P, Chander Rao S (2012) Agrobacterium-mediated transformation of cotyledons of mature seeds of multiple genotypes of sunflower (Helianthus annuus L.). Plant Cell Tiss Organ Cult 110:275–287

    Article  Google Scholar 

  • Švábová L, Snýkal P, Griga M, Ondřej V (2005) Agrobacterium-mediated transformation of Pisum sativum in vitro and in vivo. Biol Plant 49:361–370

    Article  Google Scholar 

  • Teixeira da Silva JA (2005) Simple multiplication and effective genetic transformation (4 methods) of in vitro-grown tobacco by stem thin cell layers. Plant Sci 169(6):1046–1058

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA (2012) New basal media for protocorm-like body and callus induction of hybrid Cymbidium. J Fruit Ornam Plant Res 20(2):127–133

    CAS  Google Scholar 

  • Teixeira da Silva JA, Fukai S (2003) Gene introduction method affects the shoot regeneration of in vitro and greenhouse-grown chrysanthemum (Dendranthema × grandiflora (Ramat.) Kitamura). Afr J Biotechnol 2(5):114–123

    Google Scholar 

  • Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476

    Article  PubMed  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Trick HN, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep 17:482–488

    Article  CAS  Google Scholar 

  • Tripathi L, Singh AK, Singh S, Singh R, Chaudhary S, Sanyal I, Amla DV (2013) Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.). Plant Cell Tiss Organ Cult 113:513–527

    Article  CAS  Google Scholar 

  • van den Eede G, Aarts H, Buhk H-J, Corthier G, Flint HJ, Hammes W, Jacobsen B, Midtvedt T, van der Vossen A, von Wright A, Wackernagel W, Wilcks A (2004) The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem Toxicol 42:1127–1156

    Article  PubMed  CAS  Google Scholar 

  • Vasilevski G (2003) Perspectives of the application of biophysical methods in sustainable agriculture. Bulgarian J Plant Physiol SI:179–186

    Google Scholar 

  • Wang BC, Yoshikoshi A, Sakanishi A (1998) Carrot cell growth in a stimulated ultrasonic environment. Coll Surf B: Biointerfaces 12:89–95

    Article  CAS  Google Scholar 

  • Wang B, Zhao H, Liu Y, Jia Y, Akio S (2001) The effects of alternative stress on the cell membrane deformability of Chrysanthemum callus cells. Coll Surf B Biointerfaces 20:321–325

    Article  Google Scholar 

  • Wang B, Zhao H, Wang X, Duan Z, Wang D, Akio S (2002) Influence of sound stimulation on plasma membrane H+-ATPase activity. Coll Surf B: Biointerfaces 25:183–188

    Article  CAS  Google Scholar 

  • Wang X, Wang B, Jia Y, Huo D, Duan C (2003a) Effect of sound stimulation on cell cycle of Chrysanthemum (Gerbera jamesonii). Coll Surf B: Biointerfaces 29:103–107

    Article  CAS  Google Scholar 

  • Wang X, Wang B, Jia Y, Duan C, Akio S (2003b) Effect of sound wave on the synthesis of nucleic acid and protein in Chrysanthemum. Coll Surf B: Biointerfaces 29:99–102

    Article  CAS  Google Scholar 

  • Wang B, Shao J, Li B, Lian J, Duan C (2004) Soundwave stimulation triggers the content change of the endogenous hormone of the Chrysanthemum mature callus. Coll Surf B Biointerfaces 37:107–112

    Article  CAS  Google Scholar 

  • Wang Y, Luo JP, Wu HQ, ** H (2009) Conversion of protocorm-like bodies of Dendrobium huoshanense to shoots: the role of polyamines in relation to the ratio of total cytokinins and indole-3-acetic acidindole-3-acetic acid. J Plant Physiol 166:1022–2013

    Google Scholar 

  • Wang BC, Zhou J, Wang YC, Zhu LC, Teixeira da Silva JA (2006) Physical stress and plant growth. In: Teixeira da Silva J (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues (vol II, 1st edn), Global Science Books, Ltd., Isleworth, Chapter 7, pp 68–85

  • Wei M, Yang C-Y, Wei S-H (2012) Enhancement of the differentiation of protocorm-like bodies of Dendrobium officinale to shoots by ultrasound treatment. J Plant Physiol 169(8):770–774

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Zheng Y, Wang G, Guo W, Zhang Z (2011) Sonication assisted Agrobacterium-mediated transformation of chalcone synthase (CHS) gene to spring Dendrobium cultivar ‘Sanya’. Afr J Biotechnol 10(56):11832–11838

    CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflicts of interest, financial or other.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime A. Teixeira da Silva or Judit Dobránszki.

Glossary (simplified from Wikipedia)

Sound intensity

The sound power (a measure of sound energy E per time t unit) per unit area. Its unit is W/m2

Sound frequency

The number of repetitions per unit time of a complete waveform. Its unit is hertz (Hz)

Sound pressure level

It is measured in decibels (dB) above a standard reference level

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira da Silva, J.A., Dobránszki, J. Sonication and ultrasound: impact on plant growth and development. Plant Cell Tiss Organ Cult 117, 131–143 (2014). https://doi.org/10.1007/s11240-014-0429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0429-0

Keywords

Navigation