Log in

Rapid recovery- and characterization of transformants following Agrobacterium-mediated T-DNA transfer to sorghum

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Although Agrobacterium-mediated transformation of sorghum has been reported, the process is rather lengthy and remains difficult, requiring some very stringent conditions to obtain transformants. We have investigated and describe the parameters related to cocultivation, culture, and regeneration that have allowed us to obtain transgenic sorghum plants in as little as 2.5 months. We observed a 2.9-fold increase in transformation efficiency when L-cysteine was included in the medium during the cocultivation step. Furthermore, the use of modified AB minimal medium, with lower phosphate levels and acidic pH, during the induction of Agrobacterium resulted in a 2.8-fold improvement in transformation efficiencies. Incorporation of an additional binary vector, harboring extra copies of virG and virC genes, in the Agrobacterium did not confer any improvements in the transformation of sorghum. Characterization of transgene activity provided some interesting results suggesting that CaMV 35S promoter activity in T0 generation is very low during the early stages of development of a transgenic sorghum plant, and is not indicative of the expression level during the later stages of development or in the next generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Able JA, Rathus C, Godwin ID (2001) The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell Dev Biol Plant 37:341–348

    Article  CAS  Google Scholar 

  • Cai W, Gonsalves C, Tennant P, Fermin G, Souza M, Sarindu N, Jan FJ, Zhu HY, Gonsalves D (1999) A protocol for efficient transformation and regeneration of Carica papaya L. In vitro Cell Dev Biol Plant 35:61–69

    CAS  Google Scholar 

  • Cao MX, Huang JQ, He YL, Liu SJ, Wang CL, Jiang WZ, Wei ZM (2006) Transformation of recalcitrant turfgrass cultivars through improvement of tissue culture and selection regime. Plant Cell Tiss Org Cult 85:307–316

    Article  Google Scholar 

  • Carvalho CHS, Zehr UB, Gunaratna N, Anderson J, Kononowicz HH, Hodges TK, Axtell JD (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Gen Mol Biol 27:259–269

    CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Nat Acad Sci USA 90:11212–11216

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  CAS  PubMed  Google Scholar 

  • Emani C, Sunilkumar G, Rathore KS (2002) Transgene silencing and reactivation in sorghum. Plant Sci 162:181–192

    Article  CAS  Google Scholar 

  • Enriquez-Obregon GA, Prieto-Samsonov DL, De La Riva GA, Perez M, Selman-Housein G, Vazquez-Padron RI (1999) Agrobacterium-mediated japonica rice transformation: a procedure assisted by an antinecrotic treatment. Plant Cell Tiss Org Cult 59:159–168

    Article  CAS  Google Scholar 

  • Frame BR, Shou HX, Chikwamba RK, Zhang ZY, **ang CB, Fonger TM, Pegg SEK, Li BC, Nettleton DS, Pei DQ, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  CAS  PubMed  Google Scholar 

  • Gao ZS, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005a) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333

    CAS  PubMed  Google Scholar 

  • Gao ZS, **e XJ, Ling Y, Muthukrishnan S, Liang GH (2005b) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotech J 3:591–599

    Article  CAS  Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV, Royer M, San Secundo B, Narasu ML, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo Partellus). Plant Cell Rep 24:513–522

    Article  CAS  PubMed  Google Scholar 

  • Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan HQ, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28:429–444

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza Sativa L) mediated by Agrobacterium and sequence-analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  CAS  PubMed  Google Scholar 

  • Jacob SS, Veluthambi K (2003) A cointegrate Ti plasmid vector for Agrobacterium tumefaciens -mediated transformation of Indica rice cv pusa basmati 1. J Plant Biochem Biotech 12:1–9

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS Fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Liu CN, Li XQ, Gelvin SB (1992) Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Plant Mol Biol 20:1071–1087

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Wu X, Yin X, Morrand J, Chen X, Folk WR, Zhang ZJ (2009) Development of marker-free transgenic Sorghum [Sorghum Bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tiss Organ Cult 99:97–108

    Article  CAS  Google Scholar 

  • Luo ZQ, Clemente T, Farrand SK (2001) Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol Plant Microbe Interact 14:98–103

    Article  CAS  PubMed  Google Scholar 

  • Meng ZH, Liang AH, Yang WC (2007) Effects of hygromycin on cotton cultures and its application in Agrobacterium-mediated cotton transformation. In Vitro Cell Dev Biol-Plant 43:111–118

    Article  CAS  Google Scholar 

  • Nguyen TV, Thu TT, Claeys M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum [Sorghum Bicolor (L.) Moench] using an improved in vitro regeneration system. Plant Cell Tiss Org Cult 91:155–164

    Article  CAS  Google Scholar 

  • Olhoft PM, Somers DA (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    Article  CAS  Google Scholar 

  • Palanichelvam K, Oger P, Clough SJ, Cha C, Bent AF, Farrand SK (2000) A second T-region of the soybean-supervirulent chrysopine-type Ti plasmid pTichry5, and construction of a fully disarmed vir helper plasmid. Mol Plant Microbe Interact 13:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Parkhi V, Kumar V, Sunilkumar G, Campbell LM, Singh NK, Rathore KS (2009) Expression of apoplastically secreted tobacco osmotin in cotton confers drought tolerance. Mol Breed 23:625–639

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Feltus FA (2008) Genomics of sorghum, a semi-arid cereal and emerging model for tropical grass genomics. In: Moore PH, Ming R (eds) Genomics of tropical crop plants, vol 1. Springer, New York., pp 469–482

    Chapter  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, Mccann MC, Ming R, Peterson DG, Mehboob-Ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Press, Plainview

    Google Scholar 

  • Shrawat AK, Lorz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotech J 4:575–603

    Article  CAS  Google Scholar 

  • Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimisation of transformation conditions and production of transgenic sorghum (Sorghum Bicolor) via microparticle bombardment. Plant Cell Tiss Org Cult 75:1–18

    Article  CAS  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with agrobacterium allows high-speed transformation of rice. Plant J 47:969–976

    Article  CAS  PubMed  Google Scholar 

  • Winans SC, Kerstetter RA, Nester EW (1988) Transcriptional regulation of the virA-gene and virG-gene of Agrobacterium-tumefaciens. J Bacteriol 170:4047–4054

    CAS  PubMed  Google Scholar 

  • Yepes LM, Aldwinckle HS (1994) Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tiss Org Cult 37:257–269

    CAS  Google Scholar 

  • Zhao ZY, Cai TS, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Muthukrishanan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. K. Veluthambi for providing us with pSSJ3 plasmid, Dr. G. Sunilkumar for mobilizing it into the A. tumefaciens strain used in this study, and Dr. Venkatachalam Lakshmanan for his help with statistical analysis. We also thank Drs. William L. Rooney and Robert Klein for providing sorghum seeds used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keerti S. Rathore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Campbell, L.M. & Rathore, K.S. Rapid recovery- and characterization of transformants following Agrobacterium-mediated T-DNA transfer to sorghum. Plant Cell Tiss Organ Cult 104, 137–146 (2011). https://doi.org/10.1007/s11240-010-9809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9809-2

Keywords

Navigation