Log in

Polyamine and nitric oxide levels relate with morphogenetic evolution in somatic embryogenesis of Ocotea catharinensis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

In this study we examined the effect of polyamines (PAs) putrescine (Put), spermidine (Spd) and spermine (Spm) on growth, morphology evolution, endogenous PAs levels and nitric oxide (NO) release in Ocotea catharinensis somatic embryo cultures. We observed that Spd and Spm reduced culture growth, permitted embryo morphogenetic evolution from the earliest to last embryo development stages, increased endogenous PAs levels, and induced NO release in O. catharinensis somatic embryos. On the other hand, Put had little effect on these parameters. Spd and Spm could successfully be used to promote somatic embryo maturation in O. catharinensis. The results suggest that Spd and Spm have an important role during the growth, development and morphogenetic evolution of somatic embryos, through alterations in the endogenous nitric oxide and PAs metabolism in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

PAs:

Polyamines

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

WPM:

Wood plant medium

References

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss Org Cult 69:1–34

    Article  CAS  Google Scholar 

  • Bertoldi D, Tassoni A, Martinelli L, et al (2004) Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiol Plant 120:657–666

    Article  PubMed  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, et al (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Cvikrová M, Binarová P, Cenklová V, et al (1999) Reinitiation of cell division and polyamine and aromatic monoamine levels in alfafa explants during the induction of somatic embryogenesis. Physiol Plant 105:330–337

    Article  Google Scholar 

  • Danin SJ, Upfold N, Levin BL, et al (1993) Polyamines and cytokinins in celery embryogenic cell cultures. Plant Grow Reg 12:245–254

    Article  CAS  Google Scholar 

  • El Hadrami IE, D’Auzac J (1992) Effects of polyamine byosinthetic inhibitors on somatic embryogenesis and cellular polyamines in Hevea brasiliensis. J Plant Physiol 140:33–36

    CAS  Google Scholar 

  • Faure O, Mengoli M, Nougarede A, et al (1991) Polyamine pattern and biosynthesis in zygotic and somatic embryo stages of Vitis vinifera. J Plant Physiol 138:545–549

    CAS  Google Scholar 

  • Feirer RP (1995) The biochemistry of conifer embryo development: amino acids, polyamines, and storage proteins. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 1. Kluwer Academic Publishers, Dordrecht, pp 317–336

    Google Scholar 

  • Guo F-Q, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R, Shekhawat NS, Galston AW (1985) Polyamine levels as related to growth, differentiation and senescence in protoplasts-derived cultures of Vigna aconitifolia and Avena sativa. Plant Growth Reg 3:329–339

    Article  CAS  Google Scholar 

  • Kong L, Attree SM, Fowke LC (1998) Effects of polyethylene glycol and methylglyoxal bis(guanylhydrazone) on endogenous polyamine levels and somatic embryo maturation in white spruce (Picea glauca). Plant Sci 133:211–220

    Article  CAS  Google Scholar 

  • Kuhen GD, Phillips GC (2005) Role of polyamines in apoptosis and other recent advances in plant polyamines. Crit Rev Plant Sci 24:123–130

    Article  CAS  Google Scholar 

  • Kuznetsov V, Radyukina NL, Shevyakova NI (2006) Polyamines and stress: biological role, metabolism and regulation. Rus J Plant Physiol 53(5):583–604

    Article  CAS  Google Scholar 

  • Lamotte O, Courtois C, Barnavon L, et al (2005) Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule. Planta 221:1–4

    Article  PubMed  CAS  Google Scholar 

  • Laukkanen H, Sarjala T (1997) Effect of exogenous polyamines on Scots pine callus in vitro. J Plant Physiol 150:167–172

    CAS  Google Scholar 

  • Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int Plant Prop Soc Proc 30:421–427

    Google Scholar 

  • Martin-Tanguy J (1997) Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiol Plant 100:675–688

    Article  CAS  Google Scholar 

  • Minocha R, Dale RS, Cathie R, et al (1999) Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiol Plant 105:155–164

    Article  CAS  Google Scholar 

  • Minocha R, Minocha SC, Long S (2004) Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cell Dev Biol-Plant 40:572–580

    Article  CAS  Google Scholar 

  • Monteiro M, Kevers C, Dommes J, et al (2002) A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell Tiss Org Cult 68(3):225–232

    Article  CAS  Google Scholar 

  • Moura-Costa PH, Viana AM, Mantell SH (1993) In vitro plantlet regeneration of Ocotea catharinensis, an endangered Brasilian hardwood forest tree of S. Brazil. Plant Cell Tiss Org Cult 35:279–286

    Article  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Niemi K, Sarjala T, Chen X, et al (2002) Spermidine and methylglyoxal bis(guanylhydrazone) affect maturation and endogenous polyamine content of Scots pine embryogenic cultures. J Plant Physiol 159:1155–1158

    Article  CAS  Google Scholar 

  • Ötvös K, Pasternak TP, Miskolczi P, et al (2005) Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfafa cell cultures. Plant J 43:849–860

    Article  PubMed  CAS  Google Scholar 

  • Pedroso MC, Primikirios N, Roubelakis-Anagelakis KA, et al (1997) Free and conjugated polyamines in embryogenic and non-embryogenic leaf regions of camellia leaves before and during direct somatic embryogenesis. Physiol Plant 101:213–219

    Article  CAS  Google Scholar 

  • Santa-Catarina C, Hanai LR, Dornelas MC, et al (2004b) SERK gene homolog expression, polyamines and amino acids associated with somatic embryogenic competence of Ocotea catharinensis Mez. (Lauraceae). Plant Cell Tiss Org Cult 79:53–61

    Article  CAS  Google Scholar 

  • Santa-Catarina C, Olmedo AS, Meyer GA, et al (2004a) Repetitive somatic embryogenesis of Ocotea catharinensis Mez. (Lauraceae): effect of somatic embryo developmental stage and dehydration. Plant Cell Tiss Org Cult 78:55–62

    Article  Google Scholar 

  • Santa-Catarina C, Randi AM, Viana AM (2003) Growth and accumulation of storage reserves by somatic embryos of Ocotea catharinensis Mez. (Lauraceae). Plant Cell Tiss Org Cult 74:67–71

    Article  CAS  Google Scholar 

  • Santa-Catarina C, Silveira V, Balbuena TS, et al (2006) IAA, ABA, polyamines and free amino acids associated with zygotic embryo development of Ocotea catharinensis. Plant Growth Reg 49:237–247

    Article  CAS  Google Scholar 

  • Santanen A, Simola LK (1992) Changes in polyamine metabolism during somatic embryogenesis in Picea abies. J Plant Physiol 140:475–480

    CAS  Google Scholar 

  • Shoeb F, Yadav JS, Bajaj S, et al (2001) Polyamines as biomarkers for plant regeneration capacity: improvement of regeneration by modulation of polyamine metabolism in different genotypes of Indica rice. Plant Sci 160:1229–1235

    Article  PubMed  CAS  Google Scholar 

  • Silveira V, Floh EIS, Handro W, et al (2004) Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of Pinus taeda. Plant Cell Tiss Org Cult 69:233–249

    Google Scholar 

  • Silveira V, Santa-Catarina C, Tun NN, et al (2006) Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Sci 171:91–98

    Article  CAS  Google Scholar 

  • Tun NN, Holk A, Scherer GFE (2001) Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Lett 509:174–176

    Article  PubMed  CAS  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, et al (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  PubMed  CAS  Google Scholar 

  • Viana AM (1998) Somatic embryogenesis in Ocotea catharinensis Mez (Lauraceae). In: Mantell SH, Bruns S, Tragardh C, Viana AM (eds) Recent advances in biotechnology for conservation and management. International Foundation for Science, Stockholm, pp 244–253

    Google Scholar 

  • Viana AM, Mantell H (1999) Somatic embryogenesis of Ocotea catharinensis: an endangered tree of the Mata Atlântica (S. Brazil). In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 5. Kluwer Academic Publishers, Dordrecht, pp 3–30

    Google Scholar 

  • Wendehenne D, Pugin A, Klessig D, et al (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H (2005) The NO world for plants: achieving balance in an open system. Plant Cell Environ 28:78–84

    Article  CAS  Google Scholar 

  • Yamasaki H, Cohen MF (2006) NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants?. Trends Plant Sci 11:522–524

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr Ana Maria Viana (CCB/UFSC) for somatic embryos supply and Dr NiNi Tun for the support during NO analysis. This work was carried out with financial support from the State of São Paulo Research Foundation (FAPESP) and the National Council for Scientific and Technological Development (CNPq) to E.I.S.F., and a grant by the Deutsche Forschungsgemeinschaft (Sche 207/11-1) to G.E.F.S. This research was supported by FAPESP scholarship and a travel grant by the DAAD (Germany) to C.S.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudete Santa-Catarina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santa-Catarina, C., Silveira, V., Scherer, G.F.E. et al. Polyamine and nitric oxide levels relate with morphogenetic evolution in somatic embryogenesis of Ocotea catharinensis . Plant Cell Tiss Organ Cult 90, 93–101 (2007). https://doi.org/10.1007/s11240-007-9259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9259-7

Keywords

Navigation