Log in

Solution of the equivalence problem for the Painlevé IV equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We solve the equivalence problem for the Painlevé IV equation, formulating the necessary and sufficient conditions in terms of the invariants of point transformations for an arbitrary second-order differential equation to be equivalent to the Painlevé IV equation. We separately consider three pairwise nonequivalent cases: both equation parameters are zero, a = b = 0; only one parameter is zero, b = 0; and the parameter b ≠ 0. In all cases, we give an explicit point substitution transforming an equation satisfying the described test into the Painlevé IV equation and also give expressions for the equation parameters in terms of invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Gromak and N. A. Lukashevich, Analytic Properties of Solutions of Painleve Equations [in Russian], Izdatel’stvo Universitetskoe, Minsk (1990).

    MATH  Google Scholar 

  2. N. A. Kudryashov, Analytic Theory of Nonlinear Differential Equations [in Russian], IKI, Moscow (2004).

    Google Scholar 

  3. A. R. Its and V. Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painleve Equations (Lect. Notes Math., Vol. 1191), Springer, Berlin (1986).

    MATH  Google Scholar 

  4. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM Stud. Appl. Math., Vol. 4), SIAM, Philadelphia (1981).

    Book  MATH  Google Scholar 

  5. N. Kamran, K. G. Lamb, and W. F. Shadwick, J. Differ. Geom., 22, 139–150 (1985).

    MathSciNet  MATH  Google Scholar 

  6. J. Hietarinta and V. Dryuma, J. Nonlinear Math. Phys. (Suppl. 1), 9, 67–74 (2002).

    Article  MathSciNet  Google Scholar 

  7. M. V. Babich and L. A. Bordag, J. Differ. Equations, 157, 452–485 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. V. Bocharov, V. V. Sokolov, and S. I. Svinolupov, “On some equivalence problem for differential equations,” Preprint ESI 54, Intl. Erwin Schrödinger Inst. Math. Phys., Vienna (1993).

    Google Scholar 

  9. R. Dridi, J. Phys. A, 42, 125201 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  10. V. V. Kartak, Ufim. Mat. Zh., 1, No. 3, 46–56 (2009); ar**v:0909.1987v1 [math.CA] (2009).

    MathSciNet  MATH  Google Scholar 

  11. V. V. Kartak, J. Nonlinear Math. Phys., 18, 613–640 (2011); ar**v:1106.6124v1 [nlin.SI] (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. Tresse, Acta Math., 18, 1–88 (1894).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Tresse, Détermination des invariants ponctuels de l’équation différentielle ordinaire de second ordre y″ = w(x, y, y′), S. Hirzel, Leipzig (1896).

    Google Scholar 

  14. R. Liouville, J. de L’ École Polytechnique, 59, 7–76 (1889).

    Google Scholar 

  15. E. Cartan, Bull. Soc. Math. France, 52, 205–241 (1924).

    MathSciNet  MATH  Google Scholar 

  16. S. Lie, Theorie der Transformationsgruppen III, Teubner, Leipzig (1930).

    Google Scholar 

  17. G. Thomsen, Abhandlungen Hamburg, 7, 301–328 (1930).

    Article  Google Scholar 

  18. C. Grissom, G. Thompson, and G. Wilkens, J. Differ. Equations, 77, 1–15 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. A. Bordag and V. S. Dryuma, “Investigation of dynamical systems using tools of the theory of invariants and projective geometry,” NTZ-Preprint 24/95, Zentrum für Höhere Studien, Univ. Leipzig, Leipzig (1995); ar**v:solv-int/9705006v1 (1997).

    Google Scholar 

  20. V. V. Dmitrieva and R. A. Sharipov, “On the point transformations for the second order differential equations I,” ar**v:solv-int/9703003v1 (1997).

  21. R. A. Sharipov, “On the point transformations for the equation y″ = P +3Qy′+3Ry2+Sy3,” ar**v:solv-int/9706003v1 (1997).

  22. R. A. Sharipov, “Effective procedure of point classification for the equations y″ = P +3Qy′ +3Ry2 + S y3,” ar**v:math/9802027v1 (1998).

  23. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry: Methods and Applications [in Russian], Fizmatlit, Moscow (1986); English transl. (Grad. Texts Math., Vols. 93, 104, and 124), Vols. 1–3, Springer, New York (1992, 1985, and 1990).

    Google Scholar 

  24. C. Bandle and L. A. Bordag, Nonlinear Anal. A, 50, 523–540 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Cox, J. Little, and D. O’shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, New York (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kartak.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 173, No. 2, pp. 245–267, November, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartak, V.V. Solution of the equivalence problem for the Painlevé IV equation. Theor Math Phys 173, 1541–1564 (2012). https://doi.org/10.1007/s11232-012-0132-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0132-4

Keywords

Navigation