Log in

Exact solutions of the modified Korteweg-de Vries equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We use the inverse scattering method to obtain a formula for certain exact solutions of the modified Korteweg-de Vries (mKdV) equation. Using matrix exponentials, we write the kernel of the relevant Marchenko integral equation as \(\Omega \left( {x + y;t} \right) = Ce^{ - \left( {x + y} \right)A} e^{8A^3 t} B\)B, where the real matrix triplet (A,B,C) consists of a constant p×p matrix A with eigenvalues having positive real parts, a constant p×1 matrix B, and a constant 1× p matrix C for a positive integer p. Using separation of variables, we explicitly solve the Marchenko integral equation, yielding exact solutions of the mKdV equation. These solutions are constructed in terms of the unique solution P of the Sylvester equation AP + PA = BC or in terms of the unique solutions Q and N of the Lyapunov equations A°Q + QA = C°C and AN + NA° = BB°, where B°denotes the conjugate transposed matrix. We consider two interesting examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Matsutani and H. Tsuru, J. Phys. Soc. Japan, 60, 3640–3644 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  2. H. Ono, J. Phys. Soc. Japan, 61, 4336–4343 (1992).

    Article  ADS  Google Scholar 

  3. E. A. Ralph and L. Pratt, J. Nonlinear Sci., 4, 355–374 (1994).

    Article  ADS  MATH  Google Scholar 

  4. T. S. Komatsu and S.-I. Sasa, Phys. Rev. E, 52, 5574–5582 (1995); ar**v:patt-sol/9506002v1 (1995).

    Article  ADS  Google Scholar 

  5. T. Nagatani, Phys. A, 265, 297–310 (1999).

    Article  Google Scholar 

  6. Z.-P. Li and Y.-C. Liu, Eur. Phys. J. B, 53, 367–374 (2006).

    Article  ADS  MATH  Google Scholar 

  7. H. X. Ge, S. Q. Dai, Y. Xue, and L. Y. Dong, Phys. Rev. E, 71, 066119 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  8. W. K. Schief, Nonlinearity, 8, 1–9 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. K. E. Lonngren, Opt. Quant. Electron., 30, 615–630 (1998).

    Article  Google Scholar 

  10. A. H. Khater, O. H. El-Kalaawy, and D. K. Callebaut, Phys. Scr., 58, 545–548 (1998).

    Article  ADS  Google Scholar 

  11. M. Agop and V. Cojocaru, Mater. Trans., 39, 668–671 (1998).

    Google Scholar 

  12. V. Ziegler, J. Dinkel, C. Setzer, and K. E. Lonngren, Chaos Solitons Fractals, 12, 1719–1728 (2001).

    Article  ADS  MATH  Google Scholar 

  13. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering (London Math. Soc. Lect. Note Ser., Vol. 149), Cambridge Univ. Press, Cambridge (1991).

    Book  MATH  Google Scholar 

  14. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM Stud. Appl. Math., Vol. 4), SIAM, Philadelphia (1981).

    Book  MATH  Google Scholar 

  15. M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (London Math. Soc. Lect. Note Ser., Vol. 302), Cambridge Univ. Press, Cambridge (2004).

    MATH  Google Scholar 

  16. G. L. Lamb Jr., Elements of Soliton Theory, Wiley, New York (1980).

    MATH  Google Scholar 

  17. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. B. Pitaevskii, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. B. Pitaevskii, and V. E. Zakharov, Plenum, New York (1984).

    MATH  Google Scholar 

  18. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP, 34, 62–69 (1972).

    MathSciNet  ADS  Google Scholar 

  19. T. Aktosun and C. van der Mee, Inverse Problems, 22, 2165–2174 (2006); ar**v:math-ph/0606008v2 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. T. Aktosun, F. Demontis, and C. van der Mee, Inverse Problems, 23, 2171–2195 (2007); ar**v:nlin/0702010v2 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. T. Aktosun, F. Demontis, and C. van der Mee, J. Math. Phys., 51, 123521 (2010); ar**v:1003.2453v1 [nlin.SI] (2010).

    Article  MathSciNet  ADS  Google Scholar 

  22. F. Demontis and C. van der Mee, Inverse Problems, 24, 025020 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  23. H. Ono, J. Phys. Soc. Japan, 41, 1817–1818 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Wadati, J. Phys. Soc. Japan, 34, 1289–1296 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  25. F. Demontis, “Direct and inverse scattering of the matrix Zakharov-Shabat system,” Doctoral dissertation, Univ. of Cagliari, Italy (2007).

    Google Scholar 

  26. C. van der Mee, “Direct and inverse scattering for skewselfadjoint Hamiltonian systems,” in: Current Trends in Operator Theory and its Applications (Oper. Theory Adv. Appl., Vol. 149, J. A. Ball, J. W. Helton, M. Klaus, and L. Rodman, eds.), Birkhäuser, Basel (2004), pp. 407–439.

    Chapter  Google Scholar 

  27. T. N. Busse, “Generalized inverse scattering transform for the nonlinear Schrödinger equation,” Doctoral dissertation, Univ. of Texas, Arlington, Texas (2008).

    Google Scholar 

  28. H. Bart, I. Gohberg, and M. A. Kaashoek, Minimal Factorization of Matrix and Operator Functions (Oper. Theory Adv. Appl., Vol. 1), Birkhäuser, Basel (1979).

    MATH  Google Scholar 

  29. H. Dym, Linear Algebra in Action (Grad. Stud. Math., Vol. 78), Amer. Math. Soc., Providence, R. I. (2007).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Demontis.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 168, No. 1, pp. 35–48, July, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demontis, F. Exact solutions of the modified Korteweg-de Vries equation. Theor Math Phys 168, 886–897 (2011). https://doi.org/10.1007/s11232-011-0072-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-011-0072-4

Keywords

Navigation