Log in

Invasive species and natural function in ecology

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

If ecological systems are functionally organised, they can possess functions or malfunctions. Natural function would provide justification for conservationists to act for the protection of current ecological arrangements and control the presence of populations that create ecosystem malfunctions. Invasive species are often thought to be malfunctional for ecosystems, so functional arrangement would provide an objective reason for their control. Unfortunately for this prospect, I argue no theory of function, which can support such normative conclusions, can be applied to large scale ecosystems. Instead ecological systems have causal structure, with small clusters of populations achieving functional arrangement. This, however, does not leave us without reason to control invasive species. We can look at the causal arrangement of ecological systems for populations that support ecological features that we should preserve. Populations that play a causal role in reducing biodiversity should be controlled, because biodiversity is a good all prudent agents should want to preserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. A fascinating new development is Millstein’s (forthcoming) thesis that populations have ecological selected effects functions even if communities do not undergo natural selection. Co-evolution provides an ecological function to an organism, it is selected to perform as a ‘parasite’ or ‘detritivore’ for only a few specific species, which provides the ‘ecological role’ it plays in the larger ecological system it belongs to. To my understanding, in this case Millstein is arguing that there is ‘selection for’ ecological functions without ‘selection of’ ecosystems. Such functional statements may be possible, but as of yet I cannot see how to connect these co-evolutionary roles with the larger ecological community they sit within; especially when these populations are taken outside of their historic ranges. I look forward to further developments of this idea.

  2. This point is up for debate, it depends on what is accepted as the reproduction of a set of lineages. Different theories of reproduction are more or less stringent (See Griesemer 2005; Godfrey-Smith 2009).

  3. Differential retention I find more plausible than propensity to persist, but I do not have the space to expand on why, so I will consider these accounts together.

  4. We would further need to identify whether the salt makes an actual causal difference, or whether it is some other causal factor, like rainfall or the addition of a population of wedgetail eagles. This is a serious epistemic barrier.

  5. http://www.environment.nsw.gov.au/threatenedSpeciesApp/VegFormation.aspx?formationName=Dry+sclerophyll+forests+(shrub%2Fgrass+sub-formation) Accessed 14.08.2019.

  6. One option is we could indulge in some serious metaphysics and attempt to look at the ecosystem’s counterpart in the nearest possible world without that trait (Lewis 1971). I doubt the proponent of this version of naturalised function will find this desirable. Even if they do, there are issues with using such possible world semantics for identity (Mackie and Jago 2017).

  7. Thanks to Kim Sterelny for pressing this point.

  8. Recently, C2 was reformulated by the main proponents of Organisational functions (Moreno and Mossio 2015). I am, however, responding to the version of Organisational functions found within Nunes-Neto et al. (2014). Thanks to a reviewer for drawing my attention to this.

  9. For more arguments against water cycles being teleological see: Mossio and Bich 2017, p. 1100.

  10. Australian Government Invasive Species Fact Sheet https://www.environment.gov.au/biodiversity/invasive-species/publications/factsheet-feral-goat-capra-hircus Accessed 14.08.2019.

  11. Thanks to David Frank for this point.

References

  • Amundson, R., & Lauder, G. V. (1994). Function without purpose. Biology and Philosophy, 9(4), 443–469.

    Article  Google Scholar 

  • Basl, J. (2017). A trilemma for teleological individualism. Synthese, 194(4), 1057–1074.

    Article  Google Scholar 

  • Basl, J. (2019). The death of the ethic of life. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Bastolla, U., Fortuna, M. A., Pascual-García, A., Ferrera, A., Luque, B., & Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458(7241), 1018.

    Article  Google Scholar 

  • Booth, A. (2014). Symbiosis, selection, and individuality. Biology and Philosophy, 29(5), 657–673.

    Article  Google Scholar 

  • Brown, J. H., & Sax, D. F. (2004). An essay on some topics concerning invasive species. Austral Ecology, 29(5), 530–536.

    Article  Google Scholar 

  • Callicott, J. B. (1995). The value of ecosystem health. Environmental Values, 4(4), 345–361.

    Article  Google Scholar 

  • Chew, M. K., & Laubichler, M. D. (2003). Natural enemies–metaphor or misconception? Science, 301(5629), 52–53.

    Article  Google Scholar 

  • Chrome, F. H., & Moore, L. A. (1990). Cassowaries in North-Eastern Queensland-Report of a survey and a review and assessment of their status and conservation and management needs. Wildlife Research, 17(4), 369–385.

    Article  Google Scholar 

  • Clarke, E. (2011). Plant individuality and multilevel selection theory. In B. Calcott & K. Sterelny (Eds.), The Major Transitions in Evolution Revisited (pp. 227–250). London: MIT Press.

    Chapter  Google Scholar 

  • Clavero, M., & García-Berthou, E. (2005). Invasive species are a leading cause of animal extinctions. Trends in Ecology & Evolution, 20(3), 110.

    Article  Google Scholar 

  • Clements, F. E. (1916). Plant succession: An analysis of the development of vegetation. Washington: Carnegie Institution of Washington.

    Book  Google Scholar 

  • Colyvan, M., Linquist, S., Grey, W., Griffiths, P., Odenbaugh, J., & Possingham, H. P. (2009). Philosophical issues in ecology: Recent trends and future directions. Ecology and Societyhttp://www.ecologyandsociety.org/vol14/iss2/art22/.

    Article  Google Scholar 

  • Cooper, G. J. (2003). The science of the struggle for existence: on the foundations of ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72, 741–765.

    Article  Google Scholar 

  • Davis, M. A., Chew, M. K., Hobbs, R. J., Lugo, A. E., Ewel, J. J., Vermeij, G. J., et al. (2011). Don’t judge species on their origins. Nature, 474(7350), 153.

    Article  Google Scholar 

  • Dawkins, R. (1982). The extended phenotype. Oxford: Freeman.

    Google Scholar 

  • Dupré, J. (1993). The disorder of things. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Dussault, A. C., & Bouchard, F. (2017). A persistence enhancing propensity account of ecological function to explain ecosystem evolution. Synthese, 194(4), 1115–1145.

    Article  Google Scholar 

  • Eliot, C. (2011). The legend of order and chaos: Communities and early community ecology. In K. DeLaplante, B. Bryson, & K. Peacock (Eds.), Handbook of the philosophy of ecology (pp. 49–107). New York: Elsevier.

    Chapter  Google Scholar 

  • Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1–10.

    Article  Google Scholar 

  • Finnoff, D., McIntosh, C., Shogren, J. F., Sims, C., & Warziniack, T. (2010). Invasive species and endogenous risk. Annual Review of Resource Economics, 2(1), 77–100.

    Article  Google Scholar 

  • Garson, J. (2011). Selected effects and causal role functions in the brain: the case for an etiological approach to neuroscience. Biology and Philosophy, 26(4), 547–565. https://doi.org/10.1007/s10539-011-9262-6.

    Article  Google Scholar 

  • Garson, J. (2017a). A generalized selected effects theory of function. Philosophy of Science, 84(3), 523–543.

    Article  Google Scholar 

  • Garson, J. (2017b). How to be a function pluralist. The British Journal for the Philosophy of Science, 69(4), 1101–1122.

    Article  Google Scholar 

  • Glackin, S. N. (2010). Tolerance and illness: The politics of medical and psychiatric classification. Journal of Medicine and Philosophy, 35(4), 449–465.

    Article  Google Scholar 

  • Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53(1), 7–26.

    Article  Google Scholar 

  • Godfrey-Smith, P. (1993). Functions: Consensus without unity. Pacific Philosophical Quarterly, 74(3), 196–208.

    Article  Google Scholar 

  • Godfrey-Smith, P. (2009). Darwinian populations and natural selection. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Godfrey-Smith, P. (2012). Darwinian individuals. In F. Bouchard & P. Huneman (Eds.), From groups to individuals (pp. 17–36). Cambridge: MIT Press.

    Google Scholar 

  • Griesemer, J. R. (2005). The informational gene and the substantial body: On the generalization of evolutionary theory by abstraction. Idealization XII: Correcting the Model. Idealization and Abstraction in the Sciences, 86, 59–115.

    Google Scholar 

  • Griffiths, P. E. (1993). Functional analysis and proper functions. The British Journal for the Philosophy of Science, 44(3), 409–422.

    Article  Google Scholar 

  • Grimm, V. (1998). To be, or to be essentially the same: the self-identity of ecological units’. Trends in Ecology & Evolution, 13(8), 298–299.

    Article  Google Scholar 

  • Guimarães, P. R., Jr., Galetti, M., & Jordano, P. (2008). Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE, 3(3), e1745. https://doi.org/10.1371/journal.pone.0001745.

    Article  Google Scholar 

  • Holm, S. (2017). Teleology and biocentrism. Synthese, 194(4), 1075–1087.

    Article  Google Scholar 

  • Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Janzen, D. H., & Martin, P. S. (1982). Neotropical anachronisms: the fruits the gomphotheres ate. Science, 215(4528), 19–27.

    Article  Google Scholar 

  • Jax, K. (2006). Ecological units: definitions and application. The Quarterly Review of Biology, 81(3), 237–258.

    Article  Google Scholar 

  • Jax, K., Jones, C. G., & Pickett, S. T. (1998). The self-identity of ecological units. Oikos, 82(2), 253–264.

    Article  Google Scholar 

  • Johnson, L. E. (1991). A morally deep world: An essay on moral significance and environmental ethics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kricher, J. (2009). The balance of nature: Ecology’s enduring myth. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Kritsky, G. (1991). Darwin’s Madagascan hawk moth prediction. American Entomologist, 37(4), 206–210.

    Article  Google Scholar 

  • Lean, C. H. (2017). Biodiversity Realism: Preserving the tree of life. Biology and Philosophy, 32(6), 1083–1103.

    Article  Google Scholar 

  • Lean, C. H. (2018). Indexically structured ecological communities. Philosophy of Science, 85(3), 501–522.

    Article  Google Scholar 

  • Lean, C., & Sterelny, K. (2016). Ecological hierarchy and biodiversity. In J. Garson, A. Plutynski, & S. Sarkar (Eds.), The Routledge handbook of biodiversity. London: Routledge.

    Google Scholar 

  • Lewis, D. (1971). Counterparts of persons and their bodies. The Journal of Philosophy, 68(7), 203–211.

    Article  Google Scholar 

  • Mace, G. M., Norris, K., & Fitter, A. H. (2012). Biodiversity and ecosystem services: a multilayered relationship. Trends in Ecology & Evolution, 27(1), 19–26.

    Article  Google Scholar 

  • Mackie, P., & Jago, M. (2017). Transworld identity. The Stanford Encyclopedia of Philosophy. Retrieved from https://plato.stanford.edu/entries/identity-transworld/. Accessed 5 Aug 2019.

  • Maclaurin, J., & Sterelny, K. (2008). What is biodiversity?. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • McShane, K. (2014). Individualist Biocentrism vs. Les ateliers de l’éthique/The Ethics Forum, 9(2), 130–148. https://doi.org/10.7202/1026682ar.

    Article  Google Scholar 

  • Millikan, R. G. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge: MIT press.

    Google Scholar 

  • Millstein, R. L. (Forthcoming). Functions and functioning in Aldo Leopold’s land ethic and in ecology. Philosophy of Science.

  • Moreno, A., & Mossio, M. (2015). Biological autonomy: A philosophical and theoretical enquiry. Berlin: Springer.

    Book  Google Scholar 

  • Mossio, M., & Bich, L. (2017). What makes biological organisation teleological? Synthese, 194(4), 1089–1114.

    Article  Google Scholar 

  • Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions. The British Journal for the Philosophy of Science, 60(4), 813–841.

    Article  Google Scholar 

  • Neander, K. (1983). Abnormal psychobiology. Unpublished Ph.D. Thesis, LaTrobe.

  • Nehring, K., & Puppe, C. (2002). A theory of diversity. Econometrica, 70(3), 1155–1198.

    Article  Google Scholar 

  • Nunes-Neto, N., Moreno, A., & El-Hani, C. N. (2014). Function in ecology: an organizational approach. Biology and Philosophy, 29(1), 123–141. https://doi.org/10.1007/s10539-013-9398-7.

    Article  Google Scholar 

  • Odenbaugh, J. (2010). On the very idea of an ecosystem. In A. Hazlett (Ed.), New waves in metaphysics (pp. 240–258). London: Palgrave Macmillan.

    Google Scholar 

  • Paine, R. T. (1966). Food web complexity and species diversity. The American Naturalist, 100(910), 65–75. https://doi.org/10.1086/282400.

    Article  Google Scholar 

  • Paine, R. T. (1974). Intertidal community structure. Oecologia, 15(2), 93–120.

    Article  Google Scholar 

  • Pearce, F. (2015). The new wild: Why invasive species will be nature’s salvation. Cambridge: Icon Books Ltd.

    Google Scholar 

  • Pimm, S. L. (1991). The balance of nature?: ecological issues in the conservation of species and communities. Chicago: University of Chicago Press.

    Google Scholar 

  • Post, D. M., Doyle, M. W., Sabo, J. L., & Finlay, J. C. (2007). The problem of boundaries in defining ecosystems: a potential landmine for uniting geomorphology and ecology. Geomorphology, 89(1), 111–126.

    Article  Google Scholar 

  • Raffles, H. (2011) Mother Nature’s melting pot. New York Times (2 April 2011): WK12.

  • Rezende, E. L., Jordano, P., & Bascompte, J. (2007). Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos, 116(11), 1919–1929.

    Article  Google Scholar 

  • Ricklefs, R. E. (2005). Phylogenetic perspectives on patterns of regional and local species richness. In E. Bermingham, C. Dick, & C. C. Moritz (Eds.), Rainforest: Past, present and future (pp. 16–40). Chicago: University of Chicago Press.

    Google Scholar 

  • Rolston, H., III. (1988). Environmental ethics. Philadelphia: Temple University Press.

    Google Scholar 

  • Saborido, C., Mossio, M., & Moreno, A. (2011). Biological organization and cross-generation functions. The British Journal for the Philosophy of Science, 62(3), 583–606.

    Article  Google Scholar 

  • Sagoff, M. (1984). Animal liberation and environmental ethics: Bad marriage, quick divorce. Osgoode Hall Law Journal, 22, 297–307.

    Google Scholar 

  • Sagoff, M. (2005). Do non-native species threaten the natural environment? Journal of Agricultural and Environmental Ethics, 18(3), 215–236.

    Article  Google Scholar 

  • Sagoff, M. (2019). When is it co-evolution? A reply to Steen and co-authors. Biology and Philosophy, 34(10), 1–19.

    Google Scholar 

  • Sandler, R. (2007). Character and environment: A virtue-oriented approach to environmental ethics. New York: Columbia University Press.

    Google Scholar 

  • Sarkar, S. (2012). Environmental philosophy: from theory to practice. New York: Wiley.

    Google Scholar 

  • Simberloff, D. (2015). Nature’s nature and the place of non-native species. Current Biology, 25, R585–R599.

    Article  Google Scholar 

  • Simberloff, D., Martin, J.-L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., et al. (2013). Impacts of biological invasions: What’s what and the way forward. Trends in Ecology & Evolution, 28(1), 58–66.

    Article  Google Scholar 

  • Singer, P. (1975). Animal liberation. Newyork: Random House.

    Google Scholar 

  • Skillings, D. (2016). Holobionts and the ecology of organisms: Multi-species communities or integrated individuals? Biology and Philosophy, 31(6), 875–892.

    Article  Google Scholar 

  • Soulé, M. E. (1985). What is conservation biology? BioScience, 35(11), 727–734. https://doi.org/10.2307/1310054.

    Article  Google Scholar 

  • Sterelny, K. (2005). The elusive synthesis. In K. Cuddington & B. Beisner (Eds.), Ecological paradigms lost: Routes of theory change (Vol. 2, pp. 311–329). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Sterelny, K. (2006). Local ecological communities. Philosophy of Science, 73(2), 215–231.

    Article  Google Scholar 

  • Stocker, G. C., & Irvine, A. K. (1983). Seed dispersal by cassowaries (Casuarius casuarius) in North Queensland’s rainforests. Biotropica, 15(3), 170–176.

    Article  Google Scholar 

  • Sullivan, S. (1996). Guest editorial: towards a non-equilibrium ecology: perspectives from an arid land. Journal of Biogeography, 23(1), 1–5.

    Google Scholar 

  • Taylor, P. W. (1989). Respect for nature. Princeton: Princeton University Press.

    Google Scholar 

  • Thompson, K. (2014). Where do camels belong? The story and science of invasive species. London: Profile Books.

    Google Scholar 

  • Varner, G. E. (1998). In nature’s interests?. Oxford: Oxford University Press.

    Google Scholar 

  • Wakefield, J. C. (1992). Disorder as harmful dysfunction: a conceptual critique of DSM-III-R’s definition of mental disorder. Psychological Review, 99(2), 232.

    Article  Google Scholar 

  • Winograd, N. J. (2013) Biological xenophobia: the environmental movement’s war on Nature. Huffington Post: the blog, 6 June 2013.

  • Young, A. M., & Larson, B. M. (2011). Clarifying debates in invasion biology: a survey of invasion biologists. Environmental Research, 111(7), 893–898.

    Article  Google Scholar 

Download references

Acknowledgements

First I would like to thank my reviewers for the helpful feedback. The following people, and collectives, provided feedback or reviewed the paper: ANU Philsoc, Carl Brusse, Mark Colyvan, David Frank, Justin Garson, Paul Griffiths and his lab group, Ste Mann, University of Otago Philosophy Department, Kim Sterelny, and probably more. The views expressed in this paper do not reflect on theirs. Work on this paper was supported by an Australian Research Council Discovery Grant (Grant Number DP170104924).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Hunter Lean.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lean, C.H. Invasive species and natural function in ecology. Synthese 198, 9315–9333 (2021). https://doi.org/10.1007/s11229-020-02635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-020-02635-x

Keywords

Navigation