Log in

Novel pullpush organic switches with D–π–A structural designs: computational design of star shape organic materials

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structural alteration with π-linkers was used to design a donor–acceptor type series of 2,2′-(pyrimidine-4,6-diyl)bis(2,3-dihydro-1,3-benzothiazole) (PB)-based chromophores (AH1AH7) to exploit the adjustments in their optical characteristics. To investigate the electronic geometries, absorption wavelengths, charge transfer processes, and the effect of structural alterations on nonlinear optical (NLO) characteristics, density functional theory (DFT) simulations have been used. During the UV–visible study, several long-range and range separated functionals like B3LYP, CAM-B3LYP, B97XD, and APFD with the 6-311G + (d,p) basis set were used to select the efficient level at DFT. As a response, UV–vis data indicated an intriguing consistency at the B3LYP level across experimental and TD-DFT-based values of PB. All the designed molecules had a smaller energy band gap (0.84–3.67 eV) and wide absorption spectra inside the visible region. Natural bond orbital (NBO) results indicated a significant push–pull operation, with donors and π-conjugates exhibiting positive values and most acceptors exhibiting the minimum values. Electronic transformations between electron donors to acceptor moiety, Trifluoromethyl (TFM) via π-conjugated linkers were shown to have a superior linear ˂α > and nonlinear (βtotal) NLO values of 306–474 and 40–230 Debye-Angstrom−1 respectively. When chromophores with one phenyl π-linker were compared to those with the two π-linkers, the chromophores with the higher π-linker showed increased hyperpolarizability. The highest second-order hyperpolarizability (β) was found to be 230.11 Debye-Angstrom−1 which was about five times higher than urea (standard). This research has shown that by manipulating the kind of π-spacers, novel metal-free NLO compounds may be created, which might be used for high-tech NLO purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information file.

Code availability

Gaussian 09 W and Gauss view 5.1 are used for simulation and origin software is used to draw the plots.

References

  1. Zou G, Ok KM (2020) Novel ultraviolet (UV) nonlinear optical (NLO) materials discovered by chemical substitution-oriented design. Chem Sci 11:5404–5409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen H, Li Y-Y, Li B et al (2020) Salt-inclusion chalcogenide [Ba4Cl2][ZnGa4S10]: rational design of an IR nonlinear optical material with superior comprehensive performance derived from AgGaS2. Chem Mater 32:8012–8019

    Article  CAS  Google Scholar 

  3. Manojlovic M, Cabilovski R, Bavec M (2010) Organic materials: sources of nitrogen in the organic production of lettuce. Turkish J Agric For 34:163–172

    CAS  Google Scholar 

  4. Hu J, Wu J, Qu X (2018) Decomposition characteristics of organic materials and their effects on labile and recalcitrant organic carbon fractions in a semi-arid soil under plastic mulch and drip irrigation. J Arid Land 10:115–128

    Article  Google Scholar 

  5. Chen H-Z, Bai R, Cao L et al (2008) CNT-based organic-inorganic composite materials with optoelectronic functionality. Res Chem Intermed 34:115–125

    Article  CAS  Google Scholar 

  6. Lin Y, Zhan X (2016) Oligomer molecules for efficient organic photovoltaics. Acc Chem Res 49:175–183

    Article  CAS  PubMed  Google Scholar 

  7. Singh J (2010) Study of organic light-emitting devices (OLEDs) with optimal emission efficiency. Phys status solidi c 7:984–987

    Article  CAS  Google Scholar 

  8. Xu Y, Minari T, Tsukagoshi K et al (2011) Origin of low-frequency noise in pentacene field-effect transistors. Solid-State Electron 61:106–110

    Article  CAS  Google Scholar 

  9. Wang WV, Zhang Y, Li X-Y et al (2021) High performance nonvolatile organic field-effect transistor memory devices based on pyrene diimide derivative. InfoMat 3:814–822. https://doi.org/10.1002/inf2.12186

  10. Yadav S, Srivastava PK, Ghosh S (2013) Small π-conjugated organic molecules based transistor and inverter with Cu electrodes. Org Electron 14:3415–3422

    Article  CAS  Google Scholar 

  11. Zhang G, Chan JMW (2017) Reversibly thermochromic bismuth-organic materials with tunable optical gaps. J Mater Chem C 5:10007–10015

    Article  CAS  Google Scholar 

  12. Ogle J, Powell D, Flannery L, Whittaker-Brooks L (2021) Interplay between morphology and electronic structure in emergent organic and π-d conjugated organometal thin film materials. Ind & Eng Chem Res 60:15365–15379

  13. Hassan AU, Sumrra SH (2022) Exploring the bioactive sites of new sulfonamide metal chelates for multi-drug resistance: an experimental versus theoretical design. J Inorg Organomet Polym Mater 32:513–535. https://doi.org/10.1007/s10904-021-02135-6

    Article  CAS  Google Scholar 

  14. Chung H, Diao Y (2016) Polymorphism as an emerging design strategy for high-performance organic electronics. J Mater Chem C 4:3915–3933

    Article  CAS  Google Scholar 

  15. Zhang X, Gui Y, **ao H, Zhang Y (2016) Analysis of adsorption properties of typical partial discharge gases on Ni-SWCNTs using density functional theory. Appl Surf Sci 379:47–54

    Article  CAS  Google Scholar 

  16. Gounden D, Nombona N, Van Zyl WE (2020) Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coord Chem Rev 420:213359

    Article  CAS  Google Scholar 

  17. Dudley JM, Finot C, Richardson DJ, Millot G (2007) Self-similarity in ultrafast nonlinear optics. Nat Phys 3:597–603

    Article  CAS  Google Scholar 

  18. Van Erps J, Luan F, Pelusi MD et al (2010) High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As $ \_2 $ S $ \_3 $ planar waveguides. J Light Technol 28:209–215

    Article  Google Scholar 

  19. Sudarsan V (2012) Optical materials: fundamentals and applications. Funct Mater. https://doi.org/10.1016/B978-0-12-385142-0.00008-8

    Article  Google Scholar 

  20. Medishetty R, Zar\keba JK, Mayer D, et al (2017) Nonlinear optical properties, upconversion and lasing in metal-organic frameworks. Chem Soc Rev 46:4976–5004

    Article  CAS  PubMed  Google Scholar 

  21. Albrecht G, Ubl M, Kaiser S et al (2018) Comprehensive study of plasmonic materials in the visible and near-infrared: linear, refractory, and nonlinear optical properties. ACS Photonics 5:1058–1067

    Article  CAS  Google Scholar 

  22. Li K, Sun M, Zhang W-D (2018) Polycyclic aromatic compounds-modified graphitic carbon nitride for efficient visible-light-driven hydrogen evolution. Carbon N Y 134:134–144

    Article  CAS  Google Scholar 

  23. Koohi M, Bastami H (2020) Substituent effects on stability, MEP, NBO analysis, and reactivity of 2, 2, 9, 9-tetrahalosilacyclonona-3, 5, 7-trienylidenes, at density functional theory. Monatshefte für Chemie-Chemical Mon 151:11–23

    Article  CAS  Google Scholar 

  24. ** W, Zhang W, Tudi A et al (2021) Fluorine-driven enhancement of birefringence in the fluorooxosulfate: a deep evaluation from a joint experimental and computational study. Adv Sci 8:2003594

    Article  CAS  Google Scholar 

  25. Aydın G, Koçak O, Güleryüz C, Yavuz I (2020) Structural order and charge transfer in highly strained carbon nanobelts. New J Chem 44:15769–15775. https://doi.org/10.1039/D0NJ0345

    Article  Google Scholar 

  26. Ye J-T, Wang H-Q, Zhang Y, Qiu Y-Q (2019) Regulation of the molecular architectures on second-order nonlinear optical response and thermally activated delayed fluorescence property: homoconjugation and twisted donor-acceptor. J Phys Chem C 124:921–931. https://doi.org/10.1021/acs.jpcc.9b10067

    Article  CAS  Google Scholar 

  27. Hassan AU, Mohyuddin A, Nadeem S et al (2022) Structural and electronic (Absorption and Fluorescence) aroperties of a stable triplet diphenylcarbene: a DFT study. J Fluoresc. https://doi.org/10.1007/s10895-022-02969-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hassan AU, Sumrra SH, Zafar MN et al (2021) New organosulfur metallic compounds as potent drugs: synthesis, molecular modelling, spectral, antimicrobial, drug-likeness and DFT analysis. Mol Divers. https://doi.org/10.1007/s11030-020-10157-4

    Article  PubMed  Google Scholar 

  29. Dufresne S, Hanan GS, Skene WG (2007) Preparation, photophysics, and electrochemistry of segmented comonomers consisting of thiophene and pyrimidine units: new monomers for hybrid copolymers. J Phys Chem B 111:11407–11418. https://doi.org/10.1021/jp075259j

    Article  CAS  PubMed  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  31. Legler CR, Brown NR, Dunbar RA et al (2015) Scaled quantum mechanical scale factors for vibrational calculations using alternate polarized and augmented basis sets with the B3LYP density functional calculation model. Spectrochim Acta Part A Mol Biomol Spectrosc 145:15–24

    Article  CAS  Google Scholar 

  32. Sumrra SH, Hassan AU, Zafar MN et al (2022) Metal incorporated sulfonamides as promising multidrug targets: combined enzyme inhibitory, antimicrobial, antioxidant and theoretical exploration. J Mol Struct 1250:131710. https://doi.org/10.1016/j.molstruc.2021.131710

  33. Hassan AU, Sumrra SH, Imran M, Chohan ZH (2022) New 3d multifunctional metal chelates of sulfonamide: spectral, vibrational, molecular modeling, DFT, medicinal and in silico studies. J Mol Struct 132305. https://doi.org/10.1016/j.molstruc.2021.132305

  34. Hlel A, Mabrouk A, Chemek M et al (2015) A DFT study of charge-transfer and optoelectronic properties of some new materials involving carbazole units. Comput Condens Matter 3:30–40

    Article  Google Scholar 

  35. Shengelaya A, Zhao G, Keller H, Müller KA (1996) EPR evidence of Jahn-Teller polaron formation in La 1–x Ca x MnO 3+ y. Phys Rev Lett 77:5296

    Article  CAS  PubMed  Google Scholar 

  36. Saha SK, Hens A, Murmu NC, Banerjee P (2016) A comparative density functional theory and molecular dynamics simulation studies of the corrosion inhibitory action of two novel N-heterocyclic organic compounds along with a few others over steel surface. J Mol Liq 215:486–495

    Article  CAS  Google Scholar 

  37. Gun’Ko VM, Zarko VI, Goncharuk E V, et al (2007) TSDC spectroscopy of relaxational and interfacial phenomena. Adv Colloid Interface Sci 131:1–89

    Article  PubMed  Google Scholar 

  38. Torre MH, Gambino D, Araujo J et al (2005) Novel Cu ( II ) quinoxaline N 1, N 4 -dioxide complexes as selective hypoxic cytotoxins. 40:473–480. https://doi.org/10.1016/j.ejmech.2004.11.012

  39. Huber MCE, Sandeman RJ (1986) The measurement of oscillator strengths. Reports Prog Phys 49:397

    Article  CAS  Google Scholar 

  40. Meyers F, Marder SR, Pierce BM, Bredas J-L (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (. alpha., beta., and. gamma.) and bond length alternation. J Am Chem Soc 116:10703–10714

    Article  CAS  Google Scholar 

  41. Henari FZ, Morgenstern K, Blau WJ et al (1995) Third-order optical nonlinearity and all-optical switching in porous silicon. Appl Phys Lett 67:323–325

    Article  CAS  Google Scholar 

  42. Kvalheim MD, Revzen S (2021) Existence and uniqueness of global Koopman eigenfunctions for stable fixed points and periodic orbits. Phys D Nonlinear Phenom 132959

  43. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. Wiley Interdiscip Rev Comput Mol Sci 2:1–42. https://doi.org/10.1002/wcms.51

    Article  CAS  Google Scholar 

  44. Quiroz-Garc\’\ia B, Figueroa R, Cogordan JA, Delgado G, (2005) Photocyclodimers from Z-ligustilide. Experimental results and FMO analysis. Tetrahedron Lett 46:3003–3006

    Article  Google Scholar 

  45. Sumrra SH, Arshad Z, Zafar W et al (2021) Metal incorporated aminothiazole-derived compounds: synthesis, density function theory analysis, in vitro antibacterial and antioxidant evaluation. R Soc Open Sci 8:210910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Omidvar A (2017) Electronic structure tuning and bandgap opening of nitrogen and boron-doped holey graphene flake: the role of single/dual do**. Mater Chem Phys 202:258–265

    Article  CAS  Google Scholar 

  47. Anguile JJ, Ngnabeuye ON, Bridget NN et al (2018) Synthesis, characterization and DFT studies of two zinc(II) complexes based on 2-isopropylimidazole. Open J Inorg Chem 08:105–124. https://doi.org/10.4236/ojic.2018.84009

    Article  CAS  Google Scholar 

  48. Hassan AU, Sumrra SH, Raza MA et al (2021) Design, facile synthesis, spectroscopic characterization, and medicinal probing of metal-based new sulfonamide drugs: a theoretical and spectral study. Appl Organomet Chem n/a:e6054. https://doi.org/10.1002/aoc.6054

  49. Tachibana Y, Hara K, Sayama K, Arakawa H (2002) Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells. Chem Mater 14:2527–2535

    Article  CAS  Google Scholar 

  50. Imahori H (2004) Giant multi porphyrin arrays as artificial light-harvesting antennas. J Phys Chem B 108:6130–6143

    Article  CAS  PubMed  Google Scholar 

  51. Liyanage PS, de Silva RM, de Silva KMN (2003) Nonlinear optical (NLO) properties of novel organometallic complexes: high accuracy density functional theory (DFT) calculations. J Mol Struct THEOCHEM 639:195–201

    Article  CAS  Google Scholar 

  52. Oudar J-L, Chemla DS (1977) Hyperpolarizabilities of the nitro aniline and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  53. Del Freo L, Terenziani F, Painelli A (2001) Static NLO susceptibilities: testing approximation schemes against exact results. ar**v Prepr physics/0106084

  54. Piper LG, Cowles LM (1986) Einstein coefficients and transition moment variation for the NO (A 2$Σ$+–X 2$Π$) transition. J Chem Phys 85:2419–2422

    Article  CAS  Google Scholar 

  55. Di Bella S, Fragala IL, Ratner MA, Marks TJ (1993) Electron donor-acceptor complexes as potential high-efficiency second-order nonlinear optical materials. A computational investigation. J Am Chem Soc 115:682–686

    Article  Google Scholar 

  56. Raposo MMM, Fonseca AMC, Castro MCR et al (2011) Synthesis and characterization of novel diazenes bearing pyrrole, thiophene and thiazole heterocycles as efficient photochromic and nonlinear optical (NLO) materials. Dye Pigment 91:62–73

    Article  CAS  Google Scholar 

  57. Breitung EM, Shu C-F, McMahon RJ (2000) Thiazole and thiophene analogues of donor-acceptor stilbenes: molecular hyperpolarizabilities and structure-property relationships. J Am Chem Soc 122:1154–1160

    Article  CAS  Google Scholar 

  58. Muhammad S, Kumar S, Koh J et al (2018) Synthesis, characterisation, optical and nonlinear optical properties of thiazole and benzothiazole derivatives: a dual approach. Mol Simul 44:1191–1199

    Article  CAS  Google Scholar 

  59. El-Shishtawy RM, Borbone F, Al-Amshany ZM et al (2013) Thiazole azo dyes with lateral donor branch: Synthesis, structure and second-order NLO properties. Dye Pigment 96:45–51

    Article  CAS  Google Scholar 

  60. Sumrra SH, Hassan AU, Imran M et al (2020) Synthesis, characterization, and biological screening of metal complexes of novel sulfonamide derivatives: Experimental and theoretical analysis of sulfonamide crystal. Appl Organomet Chem. https://doi.org/10.1002/aoc.5623

    Article  Google Scholar 

  61. Hassan AU, Guleryuz C (2021) Theoretical evaluation of the permeability of discharge item (LiOOH) in Li-O-2 batteries. Lat Am Appl Res 51:153–157

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Management and Technology Lahore for accessing the all-research facilities. AUH and CG are also thankful to Marmara University, Istanbul, for allowing them to work on their molecular simulation lab.

Author information

Authors and Affiliations

Authors

Contributions

AUH: conception and design of the study; AM: resources, funding acquisition, CG: acquisition of data and drafting the manuscript. SN: editing the manuscript. SUH: read the final version of the manuscript and provided valuable discussions. MJ: revising and editing the manuscript. NNK: formal analysis.

Corresponding author

Correspondence to Abrar U. Hassan.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals, clinical trial registration, or plant reproducibility performed by any authors.

Consent for publication

All authors have approved the paper and agree with its publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1380 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.U., Mohyuddin, A., Güleryüz, C. et al. Novel pullpush organic switches with D–π–A structural designs: computational design of star shape organic materials. Struct Chem 34, 399–412 (2023). https://doi.org/10.1007/s11224-022-01983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01983-3

Keywords

Navigation