Log in

Cyclodextrin-Lipid Complexes: Cavity Size Matters

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Lipids being hydrophobic or amphiphilic can be encapsulated by cyclodextrin complexation. Among the various groups of lipids cholesterol, fatty acids, phospholipids and sphingolipids are overviewed concerning the structural requirements for both the lipid and the cyclodextrin component of the complexes. The chain length and the number and position of the double bonds in the fatty acids, the polarity of the head-group in the phospholipids and sphingolipids are important factors. Concerning the cyclodextrins, in addition to the most crucial cavity size also the chemical microenvironment of cavity entrances determine the interaction with lipids. While fatty acids, phospholipids and sphingolipids prefer the alpha-cyclodextrin cavity, cholesterol is complexed first of all by the beta-cyclodextrin and its derivatives. Methylated beta-cyclodextrin has extreme affinity to all of these lipids, which are common constituents of cell membranes. Based on the knowledge on the specific cyclodextrin-lipid interactions, cyclodextrin derivatives are able to selectively remove certain lipid components from model and biological membranes and can be selected making possible to modulate the lipid profile in such membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ACD:

Alpha-cyclodextrin

ALA:

Alpha-linolenic acid

BCD:

Beta-cyclodextrin

BCFA:

Branched chain fatty acid

CD:

Cyclodextrin

CMC:

Critical micelle concentration

DIMEB:

Dimethyl beta-cyclodextrin

DHA:

Docosahexaenoic acid

DLPC:

Dilauroyl phosphatidylcholine

DMPC:

Dimyristoyl phosphatidylcholine

DPPC:

Dipalmitoyl phosphatidylcholine

DS:

Degree of substitution

DSPC:

Distearoyl phosphatidylcholine

EPA:

Eicosapentaenoic acid

FA:

Fatty acid

HPBCD:

Hydroxypropyl beta-cyclodextrin

GCD:

Gamma-cyclodextrin

LBPA:

Lysobisphosphatidic acid

LUV:

Large unilamellar vesicle

PLPC:

Palmitoyl-l-α-lysophosphatidylcholine

POPC:

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine

PC:

Phosphatidylcholines

PE:

Phosphatidylethanolamines

PI:

Phosphoinositides

PS:

Phosphatidylserines

PUFA:

Polyunsaturated fatty acid

RAMEA:

Randomly methylated alpha-cyclodextrin

RAMEB:

Randomly methylated beta-cyclodextrin

RAMEG:

Random methylated gamma-cyclodextrin

SBEACD:

Sulfobutylether alpha-cyclodextrin

SBEBCD:

Sulfobutylated beta-cyclodextin

SBEGCD:

Sulfobutylated gamma-cyclodextrin

SPM:

Sphingomyelins

SUV:

Small unilamellar vesicle

TRIMEA:

Hexakis(2,3,6-tri-O-methyl) alpha-cyclodextrin

TRIMEB:

Heptakis(2,3,6-tri-O-methyl) beta-cyclodextrin

References

  1. Cermenati G, Mitro N, Audano M, Melcangi RC, Crestani M, De Fabiani E, Caruso D (2015) Lipids in the nervous system: from biochemistry and molecular biology to patho-physiology. Biochim Biophys Acta 1851(1):51–60

    Article  CAS  Google Scholar 

  2. Cermenati G, Abbiati F, Cermenati S, Brioschi E, Volonterio A, Cavaletti G, Saez E, De Fabiani E, Crestani M, Garcia-Segura LM, Melcangi RC, Caruso D, Mitro N (2012) Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation. J Lipid Res 53(2):300–310

    Article  CAS  Google Scholar 

  3. Szejtli J (2015) Ubiquitous cyclodextrins. In: Hargittai B, Hargittai I (eds) Culture of Chemistry: The Best Articles on the Human Side of 20th-Century Chemistry from the Archives of the Chemical Intelligencer. Springer Science + Business Media, New York, pp. 261–269

    Google Scholar 

  4. Fenyvesi É, Vikmon M, Szente L (2016) Cyclodextrins in food technology and human nutrition: benefits and limitations. Crit Rev Food Sci Nut 56(12):1981–2004

    Article  CAS  Google Scholar 

  5. Uekaji Y, Jo A, Ohnishi M, Nakata D, Terao K (2012) A new generation of nutra-ceuticals and cosme-ceuticals complexing lipophilic bioactives with gamma-cyclodextrin. Transact Mater Res Soc Japan 37(1):89–94

    Article  CAS  Google Scholar 

  6. Hood RL, Oakenfull DG, Sidhu GS (1995) Fat-modified eggs: nutritional and technological aspects. In: Ong ASH, Niki E, Packer L (eds) Nutrition, Lipids, Health, and Disease. AOCS Press, Champaigne, Illinois

    Google Scholar 

  7. Comerford KB, Artis JD, Jen KLC, Karakas SE (2011) The beneficial effects alpha-cyclodextrin on blood lipids and weight loss in healthy humans. Obesity 19:1200–1204

    Article  CAS  Google Scholar 

  8. Vance JE, Karten B (2014) Thematic review series: recent advances in the treatment of lysosomal storage diseases. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res 55(8):1609–1621

    Article  CAS  Google Scholar 

  9. Yao J, Ho D, Calingasan NY, Pipalia NH, Lin MT, Beal MF (2012) Neuroprotection by cyclodextrin in cell and mouse models of Alzheimer disease. J Exp Med 209:2501–2513

    Article  CAS  Google Scholar 

  10. Irie T, Otagiri M, Sunada M, Uekama K, Ohtani Y, Yamada Y, Sugiyama Y (1982) Cyclodextrin -induced hemolysis and shape changes of human erythrocytes in vitro. J Pharmacobio-Dyn 5(9):741–744

    Article  CAS  Google Scholar 

  11. Miyajima K, Saito H, Nakagaki M (1987) Interaction of cyclodextrins with lipid membrane. Nippon Kagaku Kaishi 3:306 (Chem Abstr 107:73075)

    Article  Google Scholar 

  12. Ravichandran R, Divakar S (1998) Inclusion of ring A of cholesterol inside the .beta.-cyclodextrin cavity: evidence from oxidation reactions and structural studies. J Incl Phenom Mol Recognit Chem 30(3):253–270

    Article  CAS  Google Scholar 

  13. Köhler JEH, Hohla M, Sollner R, Amann M (1998) The difference between cholesterol- and glycyrrhizin-γ-cyclodextrin complexes - an analysis by MD simulations in vacuo and in aquo and the calculation of solvation free energies with AMSOL. Supramol Sci 5(1-2):117–137

    Article  Google Scholar 

  14. Claudy P, Letoffe JM, Germain P, Bastide JP, Bayol A, Blasquez S, Rao RC, Gonzalez B Physicochemical characterization of cholesterol-beta cyclodextrin inclusion complexes. J Therm Anal 37(11-12):2497–2506

  15. Frömming KH, Fridrich R, Mehnert W (1993) Inclusion compounds of cholesterol and β-cyclodextrin. Eur J Pharm Biopharm 39(4):148–152

    Google Scholar 

  16. dos Santos C, Buera MP, Mazzobre MF (2011) Phase solubility studies and stability of cholesterol/beta- cyclodextrin inclusion complexes. J Sci Food Agric 91(24):2551–2557

    Article  CAS  Google Scholar 

  17. Higuchi T, Connors KA (1965) Phase-solubility techniques. Adv Anal Chem Instrum 4:117–212

    CAS  Google Scholar 

  18. Davidson CD, Fishman YI, Puskás I, Szemán J, Sohajda T, McCauliff LA, Sikora J, Storch J, Vanier MT, Szente L, Walkley SU, Dobrenis K (2016) Efficacy and ototoxicity of different cyclodextrins in niemann–pick c disease. Ann Clin Transl Neurol 3(5):366–380

    Article  CAS  Google Scholar 

  19. Ishiguro T, Morishita E, Iohara D, Hirayama F, Wada K, Motoyama K, Arima H, Uekama K (2011) Some pharmaceutical and inclusion properties of 2-hydroxybutyl-beta- cyclodextrin derivative. Int J Pharm 419(1-2):161–169

    Article  CAS  Google Scholar 

  20. Malanga M, Szemán J, Fenyvesi É, Puskás I, Csabai K, Gy G, Fenyvesi F, Szente L (2016) “Back to the future”: A new look at hydroxypropyl beta-cyclodextrins. J Pharm Sci 105(9):2921–2931

    Article  CAS  Google Scholar 

  21. Loftsson T, Matthiasson K, Masson M (2003) The effects of organic salts on the cyclodextrin solubilization of drugs. Int J Pharm 262(1-2):101–107

    Article  CAS  Google Scholar 

  22. Kiss T, Fenyvesi F, Bacskay I, Varadi J, Fenyvesi E, Ivanyi R, Szente L, Tosaki A, Vecsernyes M (2010) Evaluation of the cytotoxicity of beta-cyclodextrin derivatives: Evidence for the role of cholesterol extraction. Eur J Pharm Sci 40:376–380

    Article  CAS  Google Scholar 

  23. Piel G, Piette M, Barillaro V, Castagne D, Evrard B, Delattre L (2007) Study of the relationship between lipid binding properties of cyclodextrins and their effect on the integrity of liposomes. Int J Pharm 338(1-2):35–42

    Article  CAS  Google Scholar 

  24. Fenyvesi É, Szemán J, Csabai K, Malanga M, Szente L (2014) Methyl-beta-cyclodextrins: the role of number and types of substituents in solubilizing power. J Pharm Sci 103:1443–1452

    Article  CAS  Google Scholar 

  25. Mascetti J, Castano S, Cavagnat D, Desbat B (2008) Organization of β-cyclodextrin under pure cholesterol, DMPC, or DMPG and mixed cholesterol/phospholipid monolayers. Langmuir 24:9616–9622

    Article  CAS  Google Scholar 

  26. Lopez CA, de Vries AH, Marrink SJ (2013) Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci Reports 3:2071

    Google Scholar 

  27. Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324

    Article  CAS  Google Scholar 

  28. Ohvo H, Slotte JP (1996) Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemist 35(24):8018–8024

    Article  CAS  Google Scholar 

  29. Niu SL, Litman BJ (2002) Determination of membrane cholesterol partition coefficient using a lipid vesicle–cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition. Biophys J 83:3406–3415

    Article  Google Scholar 

  30. Gutay-Tóth Z, Fenyvesi F, Bársony O, Szente L, Goda K, Szabó G, Bacsó Z (2016) Cholesterol-dependent conformational changes of p-glycoprotein are detected by the 15d3 monclonal antibody. Biochim Biophys Acta – Mol Cell Biol Lipids 1861(3):188–195

    Article  Google Scholar 

  31. Irie T, Fukunaga K, Garwood MK, Carpenter TO, Pitha J, Pitha J (1992) Hydroxypropyl cyclodextrins in parenteral use. II: Effects on transport and disposition of lipids in rabbit and humans. J Pharm Sci 81(6):524–528

    Article  CAS  Google Scholar 

  32. Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content, J. Lipid Res 38:2264–2272

    CAS  Google Scholar 

  33. Christian AE, Byun HS, Zhong N, Wanunu M, Marti T, Fürer A, Diederich F, Bittman R, Rothblat GH (1999) Comparison of the capacity of β-cyclodextrin derivatives and cyclophanes to shuttle cholesterol between cells and serum lipoproteins. J Lipid Res 40:1475–1482

    CAS  Google Scholar 

  34. Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621

    Article  CAS  Google Scholar 

  35. Zimmer S, Grebe A, Bakke SS, Bode N, Halvorsen B, Ulas T, Skjelland M, De Nardo D, Labzin LI, Kerksiek A, Hempel C, Heneka MT, Hawxhurst V, Fitzgerald ML, Trebicka J, Björkhem I, Gustafsson J-Å, Westerterp M, Tall AR, Wright SD, Espevik T, Schultze JL, Nickenig G, Lütjohann D, Latz E (2016) Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Transl Med 8:333–350

    Article  Google Scholar 

  36. Okamatsu A, Motoyama K, Onodera R, Higashi T, Koshigoe T, Shimada Y, Hattori K, Takeuchi T, Arima H (2013) Folate-appended β-cyclodextrin as a promising tumor targeting carrier for antitumor drugs in vitro and in vivo. Bioconjug Chem 24(4):724–733

    Article  CAS  Google Scholar 

  37. Yokoo M, Kubota Y, Motoyama K, Higashi T, Taniyoshi M, Tokommaru H, Nishiyama R, Tabe Y, Mochinaga S, Sato A, Sueoka-Aragane N, Sueoka E, Arima H, Irie T, Kimura S (2015) 2-Hydroxypropyl-β-cyclodextrin acts as a novel anticancer agent. Plos One 10(11):e0141946

    Article  Google Scholar 

  38. Yao J, Ho D, Calingasan NY, Pipalia NH, Lin MT, Beal MF (2012) Neuroprotection by cyclodextrin in cell and mouse models of. Alzheimer disease J Exp Med. 209(13):2501–2513

    CAS  Google Scholar 

  39. Liu B (2012) Therapeutic potential of cyclodextrins in the treatment of Niemann–Pick type C disease. Clin Lipidol 7(3):289–301

    Article  CAS  Google Scholar 

  40. Tanaka Y, Yamada Y, Ishitsuka Y, Matsuo M, Shiraishi K, Wada K, Uchio Y, Kondo Y, Takeo T, Nakagata N, Higashi T, Motoyama K, Arima H, Mochinaga S, Higaki K, Ohno K, Irie T (2015) Efficacy of 2-hydroxypropyl-β-cyclodextrin in Niemann-Pick Disease type C model mice and its pharmacokinetic analysis in a patient with the disease. Biol Pharm Bull 38(6):844–851

    Article  CAS  Google Scholar 

  41. Camargo F, Erickson RP, Garve WS, Hossain GS, Carbone PN, Heidenreich RA, Blanchard J (2001) Cyclodextrins in the treatment of a mouse model of Niemann-Pick C disease. Life Sci 70(2):131–142

    Article  CAS  Google Scholar 

  42. Schlenk W, Sand DM (1961) Association of alfa-, and beta-cyclodextrins with organic acids. J Am Chem Soc 83:2312–2320

    Article  CAS  Google Scholar 

  43. Ishiguro T, Adachi S, Matsuno R (1995) Thermogravimetric analysis of cyclodextrin-fatty acid complex formation and its use for predicting suppressed autoxidation of fatty acids. Biosci Biotechnol Biochem 59(1):51–54

    Article  CAS  Google Scholar 

  44. Mikuni K, Hara K, Qiong W, Hara K, Hashimoto H (1999) Oxidative stability of docosahexaenoic acid oil (triglyceride form) included in cyclodextrins. In: Labandeira JJ, Torres Vila-Jato JL (eds) Proc Int Symp Cyclodextrins, 9th, Meeting Date 1998. Kluwer Academic Publishers, Dordrecht, Neth, pp. 549–552

    Google Scholar 

  45. Matsui Y, Yoneyama T (1996) NMR spectroscopy on inclusion complexes of cyclodextrins with unsaturated fatty acids. 14th National Symposium on Cyclodextrins, September1996, Nagasaki, Japan

  46. Okada Y, Koizumi K, Ogata K, Ohfuji T (1989) Inclusion complexes of lipids with branched cyclodextrins. Chem Pharm Bull 37(11):3096–3099

    Article  CAS  Google Scholar 

  47. Reiners RA, Birkhaug FJ (1970) Glyceride treatment of oils for reduction of free fatty acid content. US Pat 3491132

  48. Conte JA, Stauffer KR (1996) Free fatty acid removal from used frying fat. US 5560950

  49. Shimada K, Kawano K, Ishii J, Nakamura T (1992) Structure of inclusion complexes of cyclodextrins with triglyceride at vegetable oil/water interface. J Food Sci 57:655–656

    Article  CAS  Google Scholar 

  50. Szejtli J, Banky-Elod E, Stadler A, Tetenyi P, Hethelyi I, Kernoczy L (1979) Enrichment of the unsaturated components in fatty acid ester mixtures by cyclodextrin complex formation. Acta Chim Acad Sci Hung 99(4):447–452

    CAS  Google Scholar 

  51. Szejtli J (1984) Industrial Applications of Cyclodextrins. In: Inclusion Compounds Vol.3. Academic, London

    Google Scholar 

  52. Wang J, Zhang J-L, Wu F-A (2013) Enrichment process for alpha-linolenic acid from silkworm pupae oil. Eur J Lipid Sci Technol 115(7):791–799

    Article  CAS  Google Scholar 

  53. Bru R, Lopez-Nicolas JM, Garcia-Carmona F (1995) Aggregation of polyunsaturated fatty acids in the presence of cyclodextrins. Colloids Surf A Physicochem Eng Asp 97(3):263–269

    Article  CAS  Google Scholar 

  54. Jyothirmayi N, Ramadoss CS, Divakar S (1991) Nuclear magnetic resonance studies of cyclodextrin complexes of linoleic acid and arachidonic acid. J Agric Food Chem 39(12):2123–2127

    Article  CAS  Google Scholar 

  55. Trichard L, Delgado-Charro MB, Guy RH, Fattal E, Bochot A (2008) Novel beads made of alpha-cyclodextrin and oil for topical delivery of a lipophilic drug. Pharm Res 25(2):435–440

    Article  CAS  Google Scholar 

  56. Wacker Cemie Info Sheet: Cawamax 6 – Stable oil-in-water emulsionshttps://www.wacker.com/cms/media/publications/downloads/6917_EN.pdf. Accessed 22 Sept 2016

  57. Regiert M, Wimmer T, Moldenhauer J-P (1996) Application of γ-cyclodextrin for the stabilization and/or dispersion of vegetable oils containing triglycerides of polyunsaturated acids. J Incl Phenom Mol Recognit Chem 25(1-3):213–216

    Article  CAS  Google Scholar 

  58. Bo**ova T, Coppel Y, Lauth-de Viguerie N, Milius A, Rico- Lattes I, Lattes A (2003) Complexes between beta-cyclodextrin and aliphatic guests as new noncovalent amphiphiles: Formation and physicochemical studies. Langmuir 19(13):5233–5239

    Article  CAS  Google Scholar 

  59. Young OA, Gupta RB, Sadooghy-Saraby S (2012) Effect of cyclodextrins on the flavor of goat milk and its yoghurt. J Food Sci 77:S122–S127

    Article  CAS  Google Scholar 

  60. Miyamoto Y, Nakahara M, Motoyama K, Ishiguro T, Oda Y, Yamanoi T, Okamoto I, Yagi A, Nishimura H, Hirayama F, Uekama K, Arima H (2011) Improvement of some physicochemical properties of arundic acid, (R)-(-)-2-propyloctanonic acid, by complexation with hydrophilic cyclodextrins. Int J Pharm 413(1-2):63–72

    Article  CAS  Google Scholar 

  61. Szente L, Szejtli J, Szeman J, Kato L (1993) Fatty acid-cyclodextrin complexes: properties and applications. J Incl Phenom Mol Recognit Chem 16(4):339–354

    Article  CAS  Google Scholar 

  62. Rajnavölgyi É, Laczik R, Kun V, Szente L, Fenyvesi É (2014) Effects of RAMEA-complexed polyunsaturated fatty acids on the response of human dendritic cells to inflammatory signals. Beilstein J Org Chem 10:3152–3160

    Article  Google Scholar 

  63. Lehninger DL, Nelson DL, Cox MM (2016) Principles of Biochemistry. Chapter 9. W.H. Freeman & Co, London http://www.bioinfo.org.cn/book/biochemistry/chapt09/sim1.htm . Accessed 22 Sept

    Google Scholar 

  64. Slotte JP, Illman S (1996) Desorption of fatty acids from monolayers at the air/water interface to .beta.-cyclodextrin in the subphase. Langmuir 12(23):5664–5668

    Article  CAS  Google Scholar 

  65. Roldan-Assad R, Gareil P (1995) Capillary zone electrophoretic determination of C2-C18 linear saturated free fatty acids with indirect absorbance detection. J Chromatogr A 708(2):339–350

    Article  CAS  Google Scholar 

  66. Parker KM, Stalcup AM (2008) Affinity capillary electrophoresis and isothermal titration calorimetry for the determination of fatty acid binding with beta-cyclodextrin. J Chromatogr A 1204(2):171–182

    Article  CAS  Google Scholar 

  67. European Patent Office Espacenet Database 2016. https://worldwide.espacenet.com. Accessed 22 Sept

  68. Yamane I, Kan M, Minamoto Y, Amatsuji Y (1981) α-Cyclodextrin, a novel substitute for bovine albumin in serum-free culture of mammalian cells. Proc Jpn Acad Ser B 57(10):385–389

    Article  CAS  Google Scholar 

  69. Nakama A (1991) Utilization of cyclodextrin as fat soluble compound carrier to serum-free culture of rat astrocytes. Ann Rep Osaka City Inst Public Health Environ Sci 54:48–53 (Chem Abstr 96:100488)

    CAS  Google Scholar 

  70. Kato L, Szejtli J, Szente L Water-soluble complexes of palmitic acid and palmitates for metabolic studies and cultivation trials of mycobacterium, leprae. Int J Leprosy 60:105–107

  71. Mouslim J, El Haloui N-E, David L (1997) Influence of fatty acids and detergents on polyether antibiotic production by Streptomyces hygroscopicus NRRL B-1865. Can J Microbiol 43(9):879–883

    Article  CAS  Google Scholar 

  72. Imaizumi A, Suzuki Y, Ono S, Sato H, Sato Y (1983) Heptakis(2,6-O-dimethyl)-β- cyclodextrin: a novel growth stimulant for Bordetella pertussis phase I. J Clin Microbiol 17(5):781–786

    CAS  Google Scholar 

  73. Yamane I (1985) Culture medium. US Pat 4533637

  74. Yoshii H, Furuta T, Yasunishi A, Linko Y-Y, Linko P (1996) Oxidation stability of eicosapentaenoic and docosahexaenoic acid included in cyclodextrins. J Incl Phenom Mol Recognit Chem 25(1-3):217–220

    Article  CAS  Google Scholar 

  75. Wagu M, Hayashi S, Kodama K (1984) US Pat 4438106

  76. Matsuda Y, Ootsuka M, Teraoka R (1995) Preparation of polyenoic acid inclusion compounds with improved solubility and bioavailability. JP Pat 07025816

  77. Kobayashi K, Hamazaki K, Fujioka S, Terao K, Yamamoto J, Kobayashi S (2007) The effect of n-3 PUFA/gamma-cyclodextrin complex on serum lipids in healthy volunteers - a randomized, placebo-controlled, double-blind trial. Asia Pac J Clin Nutr 16(3):429–434

    CAS  Google Scholar 

  78. Artiss J, Jen C (2009) Composition comprising dietary fat complexer comprising alpha- cyclodextrin and lipase inhibitor, and methods of using same for promoting weight loss. US Pat Appl 20090023682.

  79. Artiss JD, Brogan K, Brucal M, Moghaddam M, Jen KL (2005) The effects of a new soluble dietary fiber on weight gain and selected blood parameters in rats. Metabolism. Clin Exp 55:195–202

    Article  Google Scholar 

  80. Miyajima K, Tomita K, Nakagaki M (1985) Complex formation between di- and monophosphatidylcholines and cyclodextrins in water. Chem Pharm Bull 33(6):2587–2590

    Article  CAS  Google Scholar 

  81. Debouzy JC, Fauvelle F, Crouzy S, Chapron Y, Goschl M, Gadelle A (1998) Mechanism of .alpha.-cyclodextrin induced hemolysis. 2. A study of the factors controlling the association with serine-, ethanolamine-, and choline-phospholipids. J Pharm Sci 87(1):59–66

    Article  CAS  Google Scholar 

  82. Ahmed SM, Casu B, Cedro A, Guerrini M, Lanzarotti E, Moltrasio D, Naggi A, Torri G (1994) Disruption of micellar aggregates of ganglioside GM-1 by complexation with α-cyclodextrin. Int J Pharm 109(2):99–106

    Article  CAS  Google Scholar 

  83. Szejtli J, Cserhati T, Szogyi M (1986) Interactions between cyclodextrins and cell-membrane phospholipids. Carbohydr Polym 6(1):35–49

    Article  CAS  Google Scholar 

  84. Kobayashi T, Beuchat MH, Lindsay M, Frias S, Palmiter RD, Sakuraba H, Parton RG, Gruenberg J (1999) Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol 1(2):113–118

    Article  CAS  Google Scholar 

  85. Singh I, Kishimoto Y (1983) Effect of cyclodextrins on the solubilization of lignoceric acid, ceramide, and cerebroside, and on the enzymatic reactions involving these compounds. J Lipid Res 24(5):662–665

    CAS  Google Scholar 

  86. Stryer L (1975) Biosynthesis of Macromolecular Precursors. In: Biochemsitry. W H Freeman & Co, London

    Google Scholar 

  87. Ermolinsky B, Peredelchuk M, Provenzano D (2013) α-Cyclodextrin decreases cholera toxin binding to GM(1)- gangliosides. J Med Microbiol 62:1011–1014

    Article  CAS  Google Scholar 

  88. Mitsumori R, Kato T, Hatanaka K (2009) γ-Cyclodextrin increases hydrolysis of gangliosides by sialidase from Arthrobacter ureafaciens: hydrolysis of gangliosides. Int J Carbohydr Chem ID 398284. doi: 10.1155/2009/398284. Accessed 22 Sept 2016

  89. Nishijo JSS, Mazima K, Inoue Y, Mizuno H, Yoshida J (2000) Interactions of cyclodextrins with dipalmitoyl, distearoyl, and dimyristoyl phosphatidyl choline liposomes. A study by leakage of carboxyfluorescein in inner aqueous phase of unilamellar liposomes. Chem Pharm Bull 48(1):48–52

    Article  CAS  Google Scholar 

  90. Puskas I, Csempesz F (2007) Influence of cyclodextrins on the physical stability of dipalmitoyl phosphatidyl choline liposomes. Colloids Surf B: Biointerfaces 58(2):218–224

    Article  CAS  Google Scholar 

  91. Anderson TG, Tan A, Ganz P, Seelig J (2004) Calorimetric measurement of phospholipid interaction with methyl-beta-cyclodextrin. Biochemist 43:2251–2261

    Article  CAS  Google Scholar 

  92. Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J (1989) Differential effects of α-, β- and γ-cyclodextrins on human erythrocytes. Eur J Biochem 186(1-2):17–22

    Article  CAS  Google Scholar 

  93. Motoyama K, Arima H, Toyodome H, Irie T, Hirayama F, Uekama K (2006) Effect of 2,6-di-O-methyl-alpha-cyclodextrin on hemolysis and morphological change in rabbit’s red blood cells. Eur J Pharm Sci 29(2):111–119

    Article  CAS  Google Scholar 

  94. Kainu V, Hermansson M, Somerharju P (2010) Introduction of phospholipids to cultured cells with cyclodextrin. J Lipid Res 51:3533–3541

    Article  CAS  Google Scholar 

  95. Huang Z, London E (2013) Effect of cyclodextrin and membrane lipid structure upon cyclodextrin-lipid interaction. Langmuir 29:14631–14638

    Article  CAS  Google Scholar 

  96. Fukasawa M, Nishijima M, Itabe H, Takano T, Hanada K (2000) Reduction of sphingomyelin level without accumulation of ceramide in Chinese hamster ovary cells affects detergent-resistant membrane domains and enhances cellular cholesterol efflux to methyl-β-cyclodextrin. J Biol Chem 275(44):34028–34034

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support of National Research Fund (Multidrug project, NKFP-1A-041/2004) and EU Framework 7 (Tornado project, EU FP7 KBBE-2007-2-2-07-222720) is greatly acknowledged. The authors thank Mr. Mihaly Balint for the graphical illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éva Fenyvesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szente, L., Fenyvesi, É. Cyclodextrin-Lipid Complexes: Cavity Size Matters. Struct Chem 28, 479–492 (2017). https://doi.org/10.1007/s11224-016-0884-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0884-9

Keywords

Navigation