Log in

Adsorption and dissociation of hydrogen peroxide on the defected carbon nanotubes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional calculations have been performed on the structural and electronic properties of the pristine and Stone–Wales-defected (SW) carbon nanotubes (CNT) with and without the adsorption of a H2O2 molecule. H2O2 interacts with the pristine CNT weakly, releasing energy of about 2.9 kcal/mol, but it presents a bit higher reactivity toward the SW-defected CNT. However, the adsorption of the H2O2 molecule on the SW-CNT is still very weak because of its small adsorption energy, large binding distance, and small charge transfer. To enhance the reactivity, a Si–Si pair is doped at the center of a SW defect, forming a Si2-SW-CNT. In this case, a strong adsorption is found with a large E ad of 155.6 kcal/mol, and a short bond length in comparison with the SW-CNT. It also was shown that the H2O2 molecule could be reduced into the OH on the Si2-SW-CNT without significant change in the electronic properties of the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Ahmadi A, Hadipour NL, Kamfiroozi M, Bagheri Z (2012) Sens Actuators B 161:1025

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  4. Ahmadi Peyghan A, Hadipour N, Bagheri Z (2013) J Phys Chem C 117:2427

    Article  CAS  Google Scholar 

  5. Rastegar SF, Peyghan AA, Hadipour NL (2012) Appl Surf Sci 265:412

    Article  Google Scholar 

  6. Yu G, Cao A, Lieber CM (2007) Nat Nanotechnol 2:372

    Article  CAS  Google Scholar 

  7. Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2012) J Mol Model 18:4745

    Article  CAS  Google Scholar 

  8. Peyghan AA, Moradi M (2014) Thin Solid Films 552:111

    Article  CAS  Google Scholar 

  9. Saha S, Dinadayalane TC, Murray JC, Leszczynska D, Leszczynski J (2012) J Phys Chem C 116:22399

    Article  CAS  Google Scholar 

  10. Dinadayalane TC, Leszczynski J (2007) Theor Comp Chem 18:167

    CAS  Google Scholar 

  11. Beheshtian J, Peyghan AA, Bagheri Z (2013) Struct Chem 24:165

    Article  CAS  Google Scholar 

  12. Peralta-Inga Z, Boyd S, Murray JS, O’Connor CJ, Politzer P (2003) Struct Chem 14:431

    Article  CAS  Google Scholar 

  13. Dinadayalane TC, Murray JC, Concha MC, Politzer P, Les-zczynski J (2010) J Chem Theory Comput 6:1351

    Article  CAS  Google Scholar 

  14. Sonawane MR, Nagare BJ (2012) Appl Mech Mater 110:315

    Google Scholar 

  15. Peyghan AA, Laeen SP, Aslanzadeh SA, Moradi M (2014) Thin Solid Films 556:566

    Article  CAS  Google Scholar 

  16. Moreno J, Kasai K, David M, Nakanishi H, Kasai H (2009) J Phys Condens Matter 21:064219

    Article  CAS  Google Scholar 

  17. Luque GL, Rojas MI, Rivas GA, Leiva EPM (2010) Electrochim Acta 56:523

    Article  CAS  Google Scholar 

  18. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  19. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839

    Article  Google Scholar 

  20. Wanbayor R, Ruangpornvisuti V (2012) Appl Surf Sci 258:3298

    Article  CAS  Google Scholar 

  21. Paukku Y, Michalkova A, Leszczynski J (2008) Struct Chem 19:307

    Article  CAS  Google Scholar 

  22. Moradi M, Peyghan AA, Bagheri Z, Kamfiroozi M (2012) J Mol Model 18:3535

    Article  CAS  Google Scholar 

  23. Beheshtian J, Peyghan AA, Bagheri Z (2012) Comput Mater Sci 62:71

    Article  CAS  Google Scholar 

  24. Wang C, Xu S, Ye L, Lei W, Cui Y (2010) Struct Chem 21:1215

    Article  CAS  Google Scholar 

  25. Beheshtian J, Peyghan AA, Bagheri Z (2012) Comput Theor Chem 992:164

    Article  CAS  Google Scholar 

  26. Beheshtian J, Peyghan AA, Bagheri Z (2013) Struct Chem 24:1565

    Article  CAS  Google Scholar 

  27. Olmsted J, Williams GM (1997) Chemistry. WCB, Iowa

    Google Scholar 

  28. Moreno J, Kasai K, David M, Nakanishi H, Kasai H (2009) J Phys Condens Matter 21:064219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zargham Bagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi, M.H., Soleymanabadi, H. & Bagheri, Z. Adsorption and dissociation of hydrogen peroxide on the defected carbon nanotubes. Struct Chem 26, 485–490 (2015). https://doi.org/10.1007/s11224-014-0513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0513-4

Keywords

Navigation