Log in

Non-adiabatic Ion Acceleration in the Earth Magnetotail and Its Various Manifestations in the Plasma Sheet Boundary Layer

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Many physical phenomena in space involve energy dissipation which generally leads to charged particle acceleration, often up to very high energies. In the Earth magnetosphere energy accumulation and release occur in the magnetotail, namely in its Current Sheet (CS). The kinetic analysis of non-adiabatic ion trajectories in the CS region with finite but positive normal component of the magnetic field demonstrated that this region is essentially non-uniform in terms of scattering characteristics of ion orbits and contains spatially localized, well-separated sites of enhanced and reduced chaotization. The latter represent sources from which accelerated and energy-collimated ions are ejected into Plasma Sheet Boundary Layer (PSBL) and stream towards the Earth. Numerical simulations performed as part of a Large-Scale Kinetic Model have shown the multiplet ion structure of the PSBL is formed by a set of ion beams (beamlets) localized both in physical and velocity space. This structure of the PSBL is quite different from the one produced by CS acceleration near a magnetic reconnection region in which more energetic ion beams are generated with a broad range of parallel velocities. Multi-point Cluster observations in the magnetotail PSBL not only showed that non-adiabatic ion acceleration occurs on closed magnetic field lines with at least two CS sources operating simultaneously, but also allowed an estimation of their spatial and temporal characteristics. In this paper we discuss and compare the PSBL manifestations of both mechanisms of CS particle acceleration: one based on the peculiar properties of non-adiabatic ion trajectories which operates on closed magnetic field lines and the other representing the well-explored mechanism of particle acceleration during the course of magnetic reconnection. We show that these two mechanisms supplement each other and the first operates mostly during quiescent magnetotail periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  • I.V. Alexeev, C.J. Owen, A.N. Fazakerley, A. Runov, J.P. Dewhurst, A. Balogh, H. Rème, B. Klecker, L. Kistler, Cluster observations of currents in the plasma sheet during reconnection. Geophys. Res. Lett. 32, L03101 (2005). doi:10.1029/2004GL021420

    Article  Google Scholar 

  • K. Amano, T. Tsuda, Particle trajectories at a neutral point. J. Geomagn. Geoelectr. 30, 7 (1978)

    Article  ADS  Google Scholar 

  • M.K. Andrews, P.W. Daly, E. Keppler, Ion jetting at the plasma sheet boundary layer: simultaneous observations of incident and reflected particles. Geophys. Res. Lett. 8, 987 (1981). doi:10.1029/GL008i009p00987

    Article  ADS  Google Scholar 

  • V. Angelopoulos, R.C. Elphic, S.P. Gary, C.Y. Huang, Electromagnetic instabilities in the plasma sheet boundary layer. J. Geophys. Res. 94(A11), 15373–15383 (1989)

    Article  ADS  Google Scholar 

  • V. Angelopoulos, W. Baumjohann, C.F. Kennel, F.V. Coroniti, M.G. Kivelson, R. Pellat, R.J. Walker, H. Lühr, G. Paschmann, Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 4027–4039 (1992)

    Article  ADS  Google Scholar 

  • V. Angelopoulos, C.F. Kennel, F.V. Coroniti, W.C. Feldman, J.T. Gosling, M.G. Kivelson, R.J. Walker, C.T. Russell, Observations of a quasi-static plasma sheet boundary. Geophys. Res. Lett. 20(24), 2813–2816 (1993)

    Article  ADS  Google Scholar 

  • V. Angelopoulos, C.F. Kennel, F.V. Coroniti, R. Pellat, M.G. Kivelson, R.J. Walker, C.T. Russell, W. Baumjohann, W.C. Feldman, J.T. Gosling, Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 99(21), 257–280 (1994)

    Google Scholar 

  • V. Angelopoulos et al., Magnetotail flow bursts: association to global magnetospheric circulation, relationship to ionospheric activity, and direct evidence for localization. Geophys. Res. Lett. 24, 2271 (1997)

    Article  ADS  Google Scholar 

  • A.V. Artemyev, L.M. Zelenyi, H.V. Malova, G. Zimbardo, D. Delcourt, Acceleration and transport of ions in turbulent current sheets: formation of non-maxwelian energy distribution. Nonlinear Process. Geophys. 16, 631–639 (2009)

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla, J.P. Berchem, J. Buchner, L.M. Zelenyi, Sha** of the magnetotail from the mantle: Global and local structuring. J. Geophys. Res. 98, 5651 (1993)

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla, L.M. Zelenyi, V. Peroomian, R.L. Richard, J.M. Bosqued, The mosaic structure of plasma bulk flows in the Earth’s magnetotail. J. Geophys. Res. 100, 19,191 (1995)

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla, M. El Alaoui, V. Peroomian, L.M. Zelenyi, R.J. Walker, J. Wright, A stochastic sea: The source of plasma sheet boundary layer ion structures observed by Cluster. J. Geophys. Res. 110, A12221 (2005). doi:10.1029/2005JA011183

    Article  ADS  Google Scholar 

  • M.P. Aubry, M.G. Kivelson, R.L. McPherron, C.T. Russell, D.S. Colburn, Outer magnetosphere near midnight at quiet and disturbed times. J. Geophys. Res. 77, 5487 (1972)

    Article  ADS  Google Scholar 

  • W.I. Axford, C.O. Hines, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 39, 1433–1464 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  • A. Balogh et al., The Cluster magnetic field investigation: Overview of in-flight performance and initial results. Ann. Geophys. 19, 1207 (2001)

    Article  ADS  Google Scholar 

  • W. Baumjohann, G. Paschmann, N. Sckopke, C.A. Cattell, C.W. Carlson, Average ion moments in the plasma sheet boundary layer. J. Geophys. Res. 93, 11,507 (1988)

    Article  ADS  Google Scholar 

  • W. Baumjohann, G. Paschmann, H. Luhr, Characteristics of high-speed ion flows in the plasma sheet. J. Geophys. Res. 95, 3801–3809 (1990)

    Article  ADS  Google Scholar 

  • E.V. Belova, O.L. Vaisberg, L.M. Zelenyi, R.A. Himenes, Formation of plasma clouds in high-latitude magnetotail regions. Cosm. Res. 26(4), 606–619 (1987)

    Google Scholar 

  • J. Birn, R. Sommer, K. Schindler, Open and closed magnetospheric tail configurations and their stability. Astrophys. Space Sci. 35, 389 (1975)

    Article  ADS  Google Scholar 

  • J.M. Bosqued, M. Ashour-Abdalla, M. El Alaoui, V. Peroomian, L.M. Zelenyi, C.P. Escoubet, Dispersed ion structures at the poleward edge of the auroral oval: low-altitude observations and numerical modeling. J. Geophys. Res. 98, 19,181 (1993)

    Article  ADS  Google Scholar 

  • J. Büchner, L.M. Zelenyi, Adiabatic, chaotic and quasi-adiabatic charged particle motion in two-dimensional magnetic field reversals, paper presented at Varenna-Abustumani Workshop on Plasma Astrophysics. Eur. Space Agency, Publ. SP-285, 227 (1988)

    Google Scholar 

  • J. Büchner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotail-like field reversals, 1. Basic theory of trapped motion. J. Geophys. Res. 94, 11,821 (1989)

    Article  ADS  Google Scholar 

  • J. Büchner, Correlation-modulated chaotic scattering in the Earth’s magnetotail. Geophys. Res. Lett. 18, 1595 (1991)

    Article  ADS  Google Scholar 

  • G.R. Burkhart, J. Chen, Differential memory in Earth’s magnetotail. J. Geophys. Res. 96, 14033 (1991)

    Article  ADS  Google Scholar 

  • T.M. Burinskaya, Kelvin-Helmholtz instability in a bounded flow. Plasma Phys. Rep. 34(N11), 1013–1019 (2008)

    Article  Google Scholar 

  • D.P. Cauffman, D.A. Gurnett, Double-probe measurements of convection electric fields with the Injun-5 satellite. J. Geophys. Res. 76, 6014 (1971)

    Article  ADS  Google Scholar 

  • G. Chanteur, Spatial interpolation for four spacecraft: Theory, in Analysis Methods for Multi-Spacecraft Data, ed. by G. Paschmann, P.W. Daly (European Space Agency, Paris, 1998), p. 349

    Google Scholar 

  • J. Chen, P.J. Palmadesso, Chaos and nonlinear dynamics of single-particle orbits in a magnetotail-like magnetic field. J. Geophys. Res. 91, 1499 (1986)

    Article  ADS  Google Scholar 

  • J. Chen, G.R. Burkhardt, C.Y. Huang, Observational signatures of NL magnetotail particle dynamics. Geophys. Res. Lett. 17, 2237 (1990)

    Article  ADS  Google Scholar 

  • J. Chen, Nonlinear dynamics of charged particles in the magnetotail. J. Geophys. Res. 97, 15011–15050 (1992)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, P. Shull Jr., Current sheet acceleration of ions in the geomagnetic tail and the properties of ion burst observed at the lunar distance. Planet. Space Sci. 31, 235 (1983)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, C.J. Owen, A simple illustrative model of open flux tube motion over the dayside magnetopause. Planet. Space Sci. 37, 1461 (1989)

    Article  ADS  Google Scholar 

  • R.J. DeCoster, L.A. Frank, Observations pertaining to the dynamics of the plasma sheet. J. Geophys. Res. 84, 5099 (1979)

    Article  ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961)

    Article  ADS  Google Scholar 

  • T.E. Eastman, L.A. Frank, W.K. Peterson, W. Lennartsson, The plasma sheet boundary layer. J. Geophys. Res. 89, 1553 (1984)

    Article  ADS  Google Scholar 

  • R.C. Elphic, P.A. Mutch, C.T. Russell, Observations of field-aligned currents at the plasma sheet boundary: an ISEE 1 and 2 surveys. Geophys. Res. Lett. 12, 631 (1985)

    Article  ADS  Google Scholar 

  • R.D. Elphinstone, D.J. Hearn, L.L. Cogger, J.S. Murphree, A. Wright, I. Sandahl, S. Ohtani, P.T. Newell, D.M. Klumpar, M. Shapshak, The double oval UV auroral distribution: 2. The most poleward arc system and the dynamics of the magnetotail. J. Geophys. Res. 100, 12,093 (1995)

    ADS  Google Scholar 

  • D.H. Fairfield, Magnetic field signatures of substorms on high latitude filed lines in the night time magnetotail. J. Geophys. Res. 78, 1553 (1973)

    Article  ADS  Google Scholar 

  • T.G. Forbes, E.W. Hones, S.J. Bame Jr., J.R. Asbridge, J. Paschmann, N. Sckopke, C.T. Russell, Evidence for the tailward retreat of a magnetic neutral line in the magnetotail during substorm recovery. Geophys. Res. Lett. 8, 261 (1981)

    Article  ADS  Google Scholar 

  • L.A. Frank, R.L. McPherron, R.J. DeCoster, B.J. Burek, K.L. Ackerson, C.T. Russell, Field-aligned currents in the Earth magnetotail. J. Geophys. Res. 86(A2), 687–700 (1981)

    Article  ADS  Google Scholar 

  • L.A. Frank, W.R. Paterson, M.G. Kivelson, Observations of nonadiabatic acceleration of ions in Earth’s magnetotail. J. Geophys. Res. 99, 14,877 (1994)

    Article  ADS  Google Scholar 

  • M. Fujimoto, T. Nagai, N. Yokokawa, Y. Yamade, T. Mukai et al., Tailward electrons at the lobe-plasma sheet interface detected upon dipolarizations. J. Geophys. Res. 106, 21,255–21,262 (2001)

    Article  ADS  Google Scholar 

  • Yu.I. Galperin, Ya.I. Feldstein, Auroral luminosity and its relationship to magnetospheric plasma domains, in Auroral Physics, ed. by C.I. Meng (Cambridge University Press, New York, 1989)

    Google Scholar 

  • J. Gosling, D. Baker, S. Bame, W. Feldman, R. Zwickl, E. Smith, North-south and dawn-dusk plasma asymmetries in the distant tail lobes: ISEE 3. J. Geophys. Res. 90, A7 (1985). doi:10.1029/JA090iA07p06354

    Google Scholar 

  • E.E. Grigorenko, J.-A. Sauvaud, L.M. Zeleny, Spatial-temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail. J. Geophys. Res. 112, A05218 (2007). doi:10.1029/2006JA011986

    Article  Google Scholar 

  • E.E. Grigorenko, M. Hosino, M. Hirai, T. Mukai, L.M. Zelenyi, “Geography” of ion acceleration in the magnetotail: X-line versus current sheet effects. J. Geophys. Res. 114, A03203 (2009). doi:10.1029/2008JA013811

    Article  Google Scholar 

  • E.E. Grigorenko, T.M. Burinskaya, M. Shevelev, J.-A. Sauvaud, L.M. Zelenyi, Large-scale fluctuations of PSBL magnetic flux tubes induced by the field-aligned motion of highly accelerated ions. Ann. Geophys. 28, 1273–1288 (2010a)

    Article  ADS  Google Scholar 

  • E.E. Grigorenko, R. Koleva, L.M. Zelenyi, J.-A. Sauvaud, Accelerated ions observed in the Plasma Sheet Boundary Layer: beams or streams? Geomagn. Aeron. 50(6), 720–732 (2010b)

    Article  ADS  Google Scholar 

  • R.A. Hoffman, M. Sugiura, N.C. Maynard, R.M. Candey, J.D. Craven, L.A. Frank, Electrodynamic pattern in the polar region during periods of extreme magnetic quiescence. J. Geophys. Res. 93, 12515 (1988)

    Article  Google Scholar 

  • M. Hoshino, A. Nishida, T. Yamamoto, S. Kokubun, Turbulent magnetic field in the distant magnetotail: Botom-up process of plasmoid formation? Geophys. Rev. Lett. 21(25), 2935–2938 (1994)

    Article  ADS  Google Scholar 

  • M. Hoshino, T. Mukai, T. Yamamoto, S. Kokubun, Ion dynamics in magnetic reconnection: Comparison between numerical simulation and Geotail observations. J. Geophys. Res. 103(A3), 4509–4530 (1998)

    Article  ADS  Google Scholar 

  • M. Hoshino, T. Mukai, A. Nishida, S. Kokubun, T. Yamamoto, Non-Gyrotropic ions as evidence for an X-type neutral region. Adv. Space Res. 26, 425–430 (2000)

    Article  ADS  Google Scholar 

  • M. Hoshino, K. Hiraide, T. Mukai, Strong electron heating and non-Maxwellian behavior in magnetic reconnection. Earth Planets Space 53, 627–634 (2001)

    ADS  Google Scholar 

  • M. Hoshino, Electron surfing acceleration in magnetic reconnection. J. Geophys. Res. 110, A10215 (2005). doi:10.1029/2005JA011229

    Article  ADS  Google Scholar 

  • A. Ieda, S. Machida, Y. Saito, T. Yamamoto, A. Nishida, T. Terasawa, S. Kokubun, Statistical analysis of the plasmoid evolution with Geotail observations. J. Geophys. Res. 103(A3), 4453–4465 (1998)

    Article  ADS  Google Scholar 

  • T. Iijima, T.A. Potemra, Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. 83, 599 (1978)

    Article  ADS  Google Scholar 

  • K. Kauristie, V.A. Sergeev, M. Kubyshkina et al., Ionospheric current signatures of transient plasma sheet flows. J. Geophys. Res. 105, 10,677 (2000)

    Article  ADS  Google Scholar 

  • Y. Kazama, T. Mukai, Simultaneous appearance of energy dispersed ion signatures of ionospheric and magnetotail origins in the near-Earth plasma sheet. J. Geophys. Res. 110, A07213 (2005). doi:10.1029/2004JA010820

    Article  Google Scholar 

  • A. Keiling, H. Reme, I. Dandouras, J.M. Bosqued, G.K. Parks, M. McCarthy, L. Kistler, E. Amata, B. Klecker, A. Korth, R. Lundin, Transient ion beamlet injections into spatially separated PSBL flux tubes observed by Cluster-CIS. Geophys. Res. Lett. 31, L12804 (2004). doi:10.1029/2004GL020192

    Article  ADS  Google Scholar 

  • A. Keiling, Waves and their roles in the dynamics of the Earth’s magnetotail: a review. Space Sci. Rev. 142(1–4), 73–156 (2009)

    Article  ADS  Google Scholar 

  • M.G. Kendall, A. Stuart, The Advanced Theory of Statistics, 4th edn. (Oxford University Press, New York, 1977), vol. 1, chap. 3, p. 472

    MATH  Google Scholar 

  • M.G. Kivelson, C.T. Russell, Introduction to Space Physics (Cambridge University Press, New York, 1995)

    Google Scholar 

  • A.J. Klimas, J.A. Valdivia, D. Vassiliadis, N. Baker, M. Hesse, J. Takalo, Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetospheric plasma sheet. J. Geophys. Res. 105, 18,765 (2000)

    Article  ADS  Google Scholar 

  • S. Kokubun, T. Yamomoto, M.H. Acuna, K. Hayashi, K. Shiokawa, H. Kawano, The GEOTAIL magnetic filed experiment. J. Geomagn. Geoelectr. 46, 7–21 (1994)

    Article  Google Scholar 

  • R.H. Levy, H.E. Petschek, G.L. Siscoe, Aerodynamic aspects of the magnetosphere flow. AIAA 2, 2065–2076 (1964)

    Article  Google Scholar 

  • O.W. Lennartson, E.G. Shelley, Survey of 0.1- to 16-keV/e plasma sheet ion composition. J. Geophys. Res. 91, 3061 (1986)

    Article  ADS  Google Scholar 

  • A.T.Y. Lui, Current disruption in the Earth’s magnetosphere: observations and models. J. Geophys. Res. 101, 13,067–13,088 (1996). doi:10.1029/96JA00079

    Article  ADS  Google Scholar 

  • V.N. Lutsenko, E.A. Gavrilova, T.V. Grechko, Statistics of fine dispersion structures events in energetic particle spectra: their origin and role in the outer magnetosphere. Ann. Geophys. 26, 2097–2110 (2008)

    Article  ADS  Google Scholar 

  • L.R. Lyons, Electron energization in the geomagnetic tail current sheet. J. Geophys. Res. 89, 5479 (1984). doi:10.1029/JA089iA07p05479

    Article  ADS  Google Scholar 

  • L.R. Lyons, T.W. Speiser, Evidence for current sheet acceleration in the geomagnetic tail. J. Geophys. Res. 87, 2276 (1982)

    Article  ADS  Google Scholar 

  • R.F. Martin, T.W. Speiser, A predicted energetic ion signature of a neutral line in a geomagnetic tail. J. Geophys. Res. 93, 11,521 (1988)

    ADS  Google Scholar 

  • A.V. Milovanov, L.M. Zelenyi, “Strange” Fermi processes and power-law nonthermal tails from a self-consistent fractional kinetic equation. Phys. Rev. E 64, 052101 (2001). doi:10.1103/PhysRevE.64.052101

    Article  ADS  Google Scholar 

  • F.S. Mozer, P.Y. Lucht, The average auroral zone electric field. Geophys. Res. 79, 1001 (1974)

    Article  ADS  Google Scholar 

  • T.S. Mukai, S. Machida, Y. Saito, M. Hirahara, T. Terasawa, N. Kaya, T. Obara, M. Eijiri, A. Nishida, The low energy particle (LEP) experiment onboard the GEOTAIL satellite. J. Geomagn. Geoelectr. 46, 669–692 (1994)

    Article  Google Scholar 

  • T. Nagai, I. Shinohara, M. Fujimoto, M. Hoshino, Y. Saito et al., Geotail observations of the Hall current system: evidence of magnetic reconnection in the magnetotail. J. Geophys. Res. 106, 25,929–25,949 (2001)

    Article  ADS  Google Scholar 

  • T. Nagai, I. Shinohara, M. Fujimoto, S. Machida, R. Nakamura, Y. Saito, T. Mukai, The structure of the Hall current system in the vicinity of the magnetic reconnection site. J. Geophys. Res. 108(10), 1357 (2003). doi:10.1029/2003JA009900

    Article  Google Scholar 

  • R. Nakamura, W. Baumjohann, R. Shödel et al., Earthward flow bursts, auroral streamers, and small expansions. J. Geophys. Res. 106, 10,791 (2001)

    ADS  Google Scholar 

  • R. Nakamura, W. Baumjohann, T. Nagai, M. Fujimoto, T. Mukai, B. Klecker, R. Treumann, A. Balogh, H. Rème, J.-A. Sauvaud, L. Kistler, C. Mouikis, C.J. Owen, A.N. Fazakerley, J.P. Dewhurst, Y. Bogdanova, Flow shear near the boundary of the plasma sheet observed by Cluster and Geotail. J. Geophys. Res. 109, A05204 (2004a). doi:10.1029/2003JA010174

    Article  Google Scholar 

  • R. Nakamura, W. Baumjohann, C. Mouikis, L.M. Kistler et al., Spatial scale of high speed flows in the plasma sheet observed by Cluster. Geophys. Res. Lett. 31, L09804 (2004b). doi:10.1029/2004GL019558

    Article  Google Scholar 

  • R. Nakamura, O. Amm, H. Laakso, N. Draper, M. Lester, A. Grocott, B. Klecker, I.W. McCrea, A. Balogh, H. Rème, M. André, Localized fast flow disturbance observed in the plasma sheet and in the ionosphere. Ann. Geophys. 23, 553–566 (2005)

    Article  ADS  Google Scholar 

  • N.F. Ness, The Earth’s magnetic tail. J. Geophys. Res. 70, 2989 (1965)

    Article  ADS  Google Scholar 

  • T. Nishida, T. Mukai, Y. Yamamoto, S. Saito, S. Kokubun, Magnetotail convection in geomagnetically active times 1. Distance to the Neutral Lines. J. Geomagn. Geoelectr. 48, 489–501 (1996)

    Article  Google Scholar 

  • S. Ohtani, S. Kokubun, R.C. Elphic, C.T. Russell, Field-aligned current signatures in the near-tail region 1. ISEE observations in the Plasma Sheet Boundary Layer. J. Geophys. Res. 93(A9), 9709–9720 (1988)

    Article  ADS  Google Scholar 

  • M. Øieroset, T.D. Phan, M. Fujimoto, R. Lin, Distant magnetotail reconnection and the coupling to the near-Earth plasma sheet: Wind and Geotail case study. Geophys. Res. Lett. 31, L18805 (2004). doi:10.1029/2004GL020321

    Article  ADS  Google Scholar 

  • T.G. Onsager, M.F. Thomson, R.C. Elphig, J.T. Gosling, Models of electron and ion distributions in the plasma sheet boundary layer. J. Geophys. Res. 96, 2099 (1991)

    Google Scholar 

  • C. Owen, A.N. Fazakerley, P.J. Carter, A.J. Coates et al., Cluster PEACE observations of electrons during magnetospheric flux transfer. Ann. Geophys. 19, 1509–1522 (2001)

    Article  ADS  Google Scholar 

  • C.J. Owen, R.T. Mist, Distant plasma sheet ion distributions during reconnection. Geophys. Res. Lett. 28, 2771 (2001)

    Article  ADS  Google Scholar 

  • G. Parks, L.J. Chen, M. McCarthy, D. Larson et al., New observations of ion beams in the plasma sheet boundary layer. Geophys. Res. Lett. 25(17), 3285 (1998)

    Article  ADS  Google Scholar 

  • G. Paschmann, P.W. Daly, Analysis Methods for Multi-spacecraft Data (International Space Science Institute, ESA Publications Division, Paris, 1998)

    Google Scholar 

  • V. Peroomian, M. Ashour-Abdalla, L.M. Zelenyi, Dynamical properties of self-consistent magnetotail configurations. J. Geophys. Res. 105, 18,807 (2000)

    Article  ADS  Google Scholar 

  • V. Peroomian, L.M. Zelenyi, Large-scale modeling of magnetotail dynamics. Space Sci. Rev. 95, 15 (2001)

    Article  Google Scholar 

  • A.A. Petrukovich, Low Frequency Magnetic Fluctuations in the Earth’s Plasma Sheet. Nonequilibrium Phenomena in Plasmas (Springer, Dordrecht, 2005), pp. 145–179

    Google Scholar 

  • A.A. Petrukovich, W. Baumjohann, R. Nakamura, A. Runov, A. Balogh, Cluster vision of the magnetotail current sheet on a macroscale. J. Geophys. Res. 110, A06204 (2005). doi:10.1029/2004JA010825

    Article  Google Scholar 

  • H. Réme, C. Aoustin, J.M. Bosqued, I. Dandouras et al., First multispacecraft ion measurements in and near the Earth’s magnetosphere with identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19, 1303 (2001)

    Article  ADS  Google Scholar 

  • F.J. Rich, M.S. Gussenhoven, The absence of Region 1/Region 2 field-aligned currents during prolonged quiet times. Geophys. Res. Lett. 7, 689 (1987)

    Article  ADS  Google Scholar 

  • A. Runov, R. Nakamura, W. Baumjohann, R.A. Treumann, Current sheet structure near magnetic X-line observed by Cluster. Geophys. Res. Lett. 30, 1579 (2003). doi:10.1029/2002GL016730

    Article  ADS  Google Scholar 

  • J.-A. Sauvaud, D. Popescu, D.C. Delcourt, G.K. Parks, M. Brittnacher, V.A. Sergeev, R.A. Kovrazhkin, T. Mukai, S. Kokubun, Sporadic plasma sheet ion injections into the high altitude auroral bulge—Satellite observations. J. Geophys. Res. 104, 28,565 (1999)

    Article  ADS  Google Scholar 

  • J.-A. Sauvaud et al., Intermittent thermal plasma acceleration linked to sporadic motions of the magnetopause, first Cluster results. Ann. Geophys. 9, 1523 (2001)

    Article  ADS  Google Scholar 

  • J.-A. Sauvaud, P. Louarn, G. Fruit, H. Stenuit et al., Case studies of the dynamics of ionospheric ions in the Earth’s magnetotail. J. Geophys. Res. 109, A01212 (2004a). doi:10.1029/2003JA009996

    Article  Google Scholar 

  • J.-A. Sauvaud, R.A. Kovrazhkin, Two types of energy-dispersed ion structures at the plasma sheet boundary. J. Geophys. Res. 109, A12213 (2004b). doi:10.1029/2003JA010333

    Article  ADS  Google Scholar 

  • K. Seki, M. Hirahara, M. Hoshino, T. Terasawa, R.C. Elphic, Y. Saito, T. Mukai, H. Hayakawa, H. Kajima, H. Matsumoto, Cold ions in the hot plasma sheet of Earth’s magnetotail. Nature 422, 589 (2003)

    Article  ADS  Google Scholar 

  • V.A. Sergeev, R.C. Elphic, F.S. Mozer, A. Saint-Mark, J.-A. Sauvaud, A two-satellite study of nightside flux transfer events in the plasma sheet. Planet. Space Sci. 40, 1551 (1992)

    Article  ADS  Google Scholar 

  • V.A. Sergeev, V. Angelopoulos, J.T. Gosling et al., Detection of localized, plasma depleted flux tubes or bubbles in the midtail plasma sheet. J. Geophys. Res. 101, 10,817 (1996)

    ADS  Google Scholar 

  • V.A. Sergeev, J.-A. Sauvaud, D. Popescu, R.A. Kovrazhkin, K. Liou, P. Newell, M. Brittnacher, G. Parks, R. Nakamura, T. Mukai, G.D. Reeves, Multiple-spacecraft observation of a narrow transient plasma jet in the Earth’s plasma sheet. Geophys. Res. Lett. 27, 851–855 (2000a)

    Article  ADS  Google Scholar 

  • V.A. Sergeev et al., Plasma sheet ion injections into the auroral bulge: correlative study of spacecraft and ground observations. J. Geophys. Res. 105, 18,465 (2000b). doi:10.1029/1999JA900435

    Article  ADS  Google Scholar 

  • V. Sergeev et al., Observation of repeated intense, near-Earth reconnection on closed field lines with Cluster, Double Star, and other spacecraft. Geophys. Res. Lett. 34, L02103 (2007). doi:10.1029/2006GL028452

    Article  Google Scholar 

  • B.U.Ö. Sonnerup, Adiabatic particle orbits in a magnetic null sheet. J. Geophys. Res. 76, 8211 (1971)

    Article  ADS  Google Scholar 

  • T.W. Speiser, Particle trajectories in the model current sheet based on the open model of the magnetosphere, with applications to auroral particles. J. Geophys. Res. 70, 1717 (1965)

    Article  ADS  Google Scholar 

  • T.W. Speiser, L.R. Lyons, Comparison of an analytical approximation for particle motion in a current sheet with precise numerical calculations. J. Geophys. Res. 89, 147 (1984)

    Article  ADS  Google Scholar 

  • M. Sugiura, Identifications of the polar cap boundary and the auroral belt in the high-latitude magnetosphere: a model for field-aligned currents. J. Geophys. Res. 80, 2057 (1975)

    Article  ADS  Google Scholar 

  • T. Takada, K. Seki, M. Hirahara, M. Fujimoto, Y. Saito, H. Hayakawa, T. Mukai, Statistical properties of low frequency waves and ion beams in the plasma sheet boundary layer: geotail observations. J. Geophys. Res. 110, A02204 (2005). doi:10.1029/2004JA010395

    Article  Google Scholar 

  • T. Takada, R. Nakamura, W. Baumjohann, K. Seki, Z. Voros, Y. Asano, M. Volwerk, A. Runov, T.L. Zhang, A. Balogh, G. Paschmann, R.B. Torbert, B. Klecker, H. Reme, P. Puhl-Quinn, P. Canu, P.M.E. Decreau, Alfven waves in the near-PSBL lobe: cluster observations. Ann. Geophys. 24, 1001–1013 (2006)

    Article  ADS  Google Scholar 

  • K. Takahashi, E.W. Hones, ISEE 1 and 2 observations of ion distributions at the plasma sheet-tail lobe boundary. J. Geophys. Res. 93, 8558 (1988)

    Article  ADS  Google Scholar 

  • G. Ueno, S.-I. Ohtani, Y. Saito, T. Mukai, Field-aligned currents in the outermost plasma sheet boundary layer with Geotail observation. J. Geophys. Res. 107(11), 1399 (2002). doi:10.1029/2002JA009367

    Article  Google Scholar 

  • P. Veltri, G. Zimbardo, A.L. Taktakishvili, L.M. Zelenyi, Effect of magnetic turbulence on the ion dynamics in the distant magnetotail. J. Geophys. Res. 103(A7), 14,897–14,910 (1998)

    Article  ADS  Google Scholar 

  • M. Volwerk, K.-H. Glassmeier, A. Runov, R. Nakamura, W. Baumjohann, B. Klecker, I. Richter, A. Balogh, H. Reme, K. Yumoto, Flow burst-induced large-scale plasma sheet oscillation. J. Geophys. Res. 109, A11208 (2004). doi:10.1029/2004JA010533

    Article  ADS  Google Scholar 

  • D.J. Williams, Energetic ion beams at the edge of the plasma sheet: ISEE 1 observations plus a simple explanatory model. J. Geophys. Res. 86, 5507 (1981)

    Article  ADS  Google Scholar 

  • D.J. Williams, W. McEntire, C. Schlemm II, A.T.Y. Lui, G. Gloeckler, S.P. Christon, F. Gliem, The Geotail Energetic Particles and Ion Composition (EPIC) instrument. J. Geomagn. Geoelectr. 46, 39–57 (1994)

    Article  Google Scholar 

  • R.A. Wolf, Ionosphere-magnetosphere coupling. Space Sci. Rev. 17, 537–562 (1975)

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, D.V. Zogin, J. Buechner, Quasi-adiabatic particle acceleration in magnetic field reversals and the formation of the plasma sheet boundary layer in the Earth’s magnetotal, in Proceedings of an International School and Workshop on Plasma Astrophysics, Varenna, Italy, 24 Aug.–3 Sept. 1988, ESA SP-285, vol. 1, pp. 227–234 (1988)

    Google Scholar 

  • L.M. Zelenyi, R.A. Kovrazhkin, J.M. Bosqued, Velocity dispersed ion beams in the nightside auroral zone: AUREOL-3 observations. J. Geophys. Res. 95, 12119 (1990a)

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, J.G. Lominadze, A.L. Taktakishvili, Generation of the energetic proton and electron bursts in planetary magnetotails. J. Geophys. Res. 95, 3883–3891 (1990b)

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, D.V. Zogin, J. Buechner, Quasiadiabatic dynamics of charged particles in the tail of the magnetosphere. Cosm. Res. (English edition) 28(3), 369–381 (1990c)

    Google Scholar 

  • L.M. Zelenyi, E.E. Grigorenko, A.O. Fedorov, Spatial-temporal ion structures in the Earth’s magnetotail: Beamlets as a result of nonadiabatic impulse acceleration of the plasma. JETP Lett. 80, 663–673 (2004)

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, E.E. Grigorenko, J.-A. Sauvaud, R. Maggiolo, Multiplet structure of acceleration processes in the distant magnetotail. Geophys. Res. Lett. 33, L06105 (2006a). doi:10.1029/2005GL024901

    Article  Google Scholar 

  • L.M. Zelenyi, M.S. Dolgonosov, V. Peroomian, M. Ashour-Abdalla, Effects of nonlinearity on the structure of PSBL beamlets. Geophys. Res. Lett. 33, L18103 (2006b). doi:10.1029/2006GL026176

    Article  ADS  Google Scholar 

  • L.M. Zeleny, M.S. Dolgonosov, E.E. Grigorenko, J.-A. Sauvaud, Universal properties of the nonadiabatic acceleration of ions in current sheets. JETP Lett. 85(4), 187–193 (2007)

    Article  ADS  Google Scholar 

  • L. Zelenyi, A. Artemyev, H. Malova, A.V. Milovanov, G. Zimbardo, Particle transport and acceleration in a time-varying electromagnetic field with a multi-scale structure. Phys. Lett. A 372, 6284–6287 (2008)

    Article  ADS  MATH  Google Scholar 

  • L.M. Zelenyi, M. Dolgonosov, E.E. Grigorenko, J.-A. Sauvaud, Future perspectives of space plasma and particle instrumentation and international collaborations, in AIP Conference Proceedings, ed. by M. Hirahara, I. Shinohara, Y. Miyoshi, N. Terada, T. Mukai (2009), p. 5–14

    Google Scholar 

  • W. Zwingmann, Self-consistent magnetotail theory: Equilibrium structures including arbitrary variation along the tail axis. J. Geophys. Res. 88, 9101 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Cluster CIS, PEACE, FGM teams and Geotail LEP, EPIC and magnetic field experiment teams for providing the data. This work was supported by RFBR grants Nr. 10-02-00135; 10-02-93114 and grant of Leading Scientific Schools HIII-3200.2010.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Grigorenko.

Appendix: Model of Particle Energization in the Vicinity of Dynamic X-Line

Appendix: Model of Particle Energization in the Vicinity of Dynamic X-Line

Let us assume that reconnection magnetic field could be presented in a form: B={B 0tanh(Z/L Z ),0,B 0Z tanh(X/L X )}, where B 0 is the lobe magnetic field, L X and L Z are the spatial scales of the system in (XZ) plane. We also assume that a constant electric field E Y is applied to the system. Relations between the magnitudes of magnetic field components b n =B 0z /B 0 and spatial scales L x /L z are governed by the value of X-line angle α (see Fig. 36). The modeling domain is limited in the dawn-dusk direction: |Y|<12L Z . All spatial variables are normalized to L z (r/L z =r ) and time is normalized to the ion gyrofrequency tteB 0/mc. Velocity will be correspondingly normalized to V 0=eB 0 L Z /m i c and energy to \(V_{0}^{2}\). Ions arriving at the CS from a number of sources are placed at X=4L X ,Z=4b n L X with different Y-positions.

Fig. 36
figure 36

Test particle trajectories in 2D magnetic X-line geometry. Magnetic field lines are shown by thin dotted lines. The black circle indicates the start position of test particles

To study effects of particle isotropization and acceleration by inductive electric fields, Veltri et al. (1998) and Artemyev et al. (2009) used a model of turbulent electromagnetic fields consisting of an ensemble of plane electromagnetic waves:

(3)

Here \(g_{\mathbf{k}} = \cos( \mathbf{kr} +\phi_{\mathbf{k}}^{2} - t\omega_{\mathbf{k}} ), h_{\mathbf{k}} =\sin( \mathbf{kr} + \phi_{\mathbf{k}}^{1} - t\omega_{\mathbf{k}}), k_{ \bot} = \sqrt{k_{z}^{2} + k_{y}^{2}}\) and \(k =\sqrt{k_{z}^{2} + k_{y}^{2} + k_{x}^{2}}\). Initial phases \(\phi_{\mathbf{k}}^{1}\) and \(\phi_{\mathbf{k}}^{2}\) have a random values within the interval [0,2π]. Each harmonic has the frequency: ω k =v ϕ |k|. We assume for simplicity that v ϕ has the same value for all waves (Zelenyi et al., 2008; Artemyev et al., 2009). Wave magnitudes are described by the power distribution: δB(k)=C(1+(lk)2)η. Here l is the correlation vector (|l|=L z /10) and the value η=7/8 is derived from observations (Hoshino et al., 1994; Petrukovich, 2005, and references therein).

One can find the components of electric field from the Maxwell equations, using the expressions (3):

$$ \begin{array}{rll}\nabla\times\delta\mathbf{E} &=& - c^{-1}\partial\delta\mathbf{B}/\partial t \\[6pt]\nabla\delta\mathbf{E} &=& 0\end{array}$$
(4)

The magnitude of turbulence can be characterized by free parameter \(\delta = \sqrt{\langle \delta \mathbf{B} \cdot \delta \mathbf{B} \rangle}/B_{0}\). Wave numbers have the following distributions: k z L z =2πn z (n z =1..4),k x L z =2πn 0cosθ and k y L z =2πn 0sinθ (n 0=1..10,θ∈[0,2π]). We assume that there are 600 harmonics in the system.

In our modeling we consider two different cases. In the first case, we take a weak level of turbulence, δ=0.3, and a relatively large value of the angle, α=π/9. The second case corresponds to the strong turbulence level δ=0.6, and small angle, α=π/18. In the first case, the increase of X-line angle leads to particle thermalization: the value of ion thermal velocity V T approaches to the value of their bulk velocity V D (V D /V T→1). In the second case, the increase of the turbulence level, δ, results in strong particle acceleration (V D grows) and particles acquire energies which could significantly exceed the characteristic value of potential drop across the magnetotail. Electromagnetic turbulence in this case also leads to some particle thermalization, even in systems with a small value of X-line angle, so that ion V D /V T≥1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorenko, E.E., Zelenyi, L.M., Dolgonosov, M.S. et al. Non-adiabatic Ion Acceleration in the Earth Magnetotail and Its Various Manifestations in the Plasma Sheet Boundary Layer. Space Sci Rev 164, 133–181 (2011). https://doi.org/10.1007/s11214-011-9858-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9858-9

Keywords

Navigation