Log in

Randomness in Sunspot Number: A Clue to Predict Solar Cycle 25

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Forecasting of solar activity is extremely important, due to its impact on our space-based technology. In recent years, we have observed a continuous decline in the peak sunspot number for Solar Cycles (SCs) 21 to 24. We are more curious about peak activity of SC 25 because if the solar activity weakens further, then it may be an indication of new extended minima. So far, the daily sunspot-number data make up the longest observational series of the solar activity available, and recently this has been replaced with the corrected new Version 2.0 sunspot-number series. In general, different prediction models are available to forecast the peak smoothed sunspot number (SSN) of the upcoming SC but they are based on the older Version 1.0 sunspot data. Therefore, it is necessary to check the applicability of earlier proposed models to predict the peak SSN using the Version 2.0 sunspot-number series. Here, we re-evaluate one such earlier proposed prediction model, which is based on the estimates of the Shannon entropy, a measure of randomness, for Version 2.0 sunspot data. We find that this prediction model is applicable to the Version 2.0 sunspot-number series. To verify the robustness of the prediction model, we used the histogram and additionally the kernel density estimator (KDE) method to calculate the probability distribution function (PDF). The estimate of the PDF is a prerequisite to compute the Shannon entropy. We found that the prediction model is robust and the correlation coefficients between model parameters are 0.93 and 0.92, respectively, for these two approaches. This exercise provides a new prediction model for the peak SSN based on the Version 2.0 sunspot-number series. The model forecasts the peak smoothed sunspot number of \(136.9\pm 24\) using a histogram-derived PDF and \(150.7\pm 25\) using a KDE-derived PDF for the upcoming SC 25. These predictions for SC 25 are more reliable as up to date (December 2020) sunspot-number data have been utilized to get the entropy in the end phase of SC 24. It suggests that SC 25 would be similar or slightly stronger than SC 24.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bhowmik, P., Nandy, D.: 2018, Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nat. Comm.9, 5209. DOI.

    Article  ADS  Google Scholar 

  • Cameron, R.H., Jiang, J., Schüssler, M.: 2016, Solar cycle 25: another moderate cycle? Astrophys. J. Lett.823, L22. DOI.

    Article  ADS  Google Scholar 

  • Carbone, A., Castelli, G., Stanley, H.: 2004, Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E69, 026105. DOI.

    Article  ADS  Google Scholar 

  • Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. Space Sci. Rev.186, 35. DOI.

    Article  ADS  Google Scholar 

  • Clette, F., Lefèvre, L., Cagnotti, M., Cortesi, S., Bulling, A.: 2016a, The revised Brussels–Locarno sunspot number (1981 – 2015). Solar Phys.291, 2733. DOI.

    Article  ADS  Google Scholar 

  • Clette, F., Cliver, E., Lefèvre, L., Svalgaard, L., Vaquero, J., Leibacher, J.: 2016b, Preface to topical issue: recalibration of the sunspot number. Solar Phys.291, 2479. DOI.

    Article  ADS  Google Scholar 

  • Das Sharma, S., Ramesh, D., Bapanayya, C., Raju, P.: 2012, Sea surface temperatures in cooler climate stages bear more similarity with atmospheric CO2 forcing. J. Geophys. Res., Atmos.117, D13110. DOI.

    Article  ADS  Google Scholar 

  • Du, Z., Du, S.: 2006, The relationship between the amplitude and descending time of a solar activity cycle. Solar Phys.238, 431. DOI.

    Article  ADS  Google Scholar 

  • Gkana, A., Zachilas, L.: 2016, Re-evaluation of predictive models in light of new data: Sunspot number version 2.0. Solar Phys.291, 2457. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2015, The solar cycle. Liv. Rev. Solar Phys.12, 4. DOI.

    Article  ADS  Google Scholar 

  • Helal, H.R., Galal, A.: 2013, An early prediction of the maximum amplitude of the Solar Cycle 25. J. Adv. Res.4, 275. DOI.

    Article  Google Scholar 

  • Ingale, M., Janardhan, P., Bisoi, S.K.: 2019, Beyond the minisolar maximum of Solar Cycle 24: declining solar magnetic fields and the response of the terrestrial magnetosphere. J. Geophys. Res.124, 6363. DOI.

    Article  Google Scholar 

  • Johnson, J.R., Wing, S., Camporeale, E.: 2018, Transfer entropy and cumulant-based cost as measures of nonlinear causal relationships in space plasmas: applications to Dst. Ann. Geophys.36, 945. DOI.

    Article  ADS  Google Scholar 

  • Kakad, B.: 2011, A new method for prediction of peak sunspot number and ascent time of the solar cycle. Solar Phys.270, 393. DOI.

    Article  ADS  Google Scholar 

  • Kakad, B., Kakad, A.: 2020, Characteristics of probability distribution functions of low-and high-latitude current systems during Solar Cycle 24. Adv. Space Res.65, 1559. DOI.

    Article  ADS  Google Scholar 

  • Kakad, B., Kakad, A., Ramesh, D.S.: 2015, A new method for forecasting the solar cycle descent time. J. Space Weather Space Clim.5, A29. DOI.

    Article  Google Scholar 

  • Kakad, B., Kakad, A., Ramesh, D.S.: 2017a, Prediction of the length of upcoming solar cycles. Solar Phys.292, 181. DOI.

    Article  ADS  Google Scholar 

  • Kakad, B., Kakad, A., Ramesh, D.S.: 2017b, Shannon entropy-based prediction of Solar Cycle 25. Solar Phys.292, 95. DOI.

    Article  ADS  Google Scholar 

  • Kakad, B., Kakad, A., Ramesh, D.S., Lakhina, G.S.: 2019, Diminishing activity of recent solar cycles (22 – 24) and their impact on geospace. J. Space Weather Space Clim.9, A01. DOI.

    Article  ADS  Google Scholar 

  • Li, F., Kong, D., **e, J., **ang, N., Xu, J.: 2018, Solar cycle characteristics and their application in the prediction of cycle 25. J. Atmos. Solar-Terr. Phys.181, 110. DOI.

    Article  ADS  Google Scholar 

  • Marov, M.Y., Kuznetsov, V.D.: 2015, In: Pelton, J.N., Allahdadi, F. (eds.) Solar Flares and Impact on Earth, Springer, Cham, 47. DOI.

    Chapter  Google Scholar 

  • Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L.A., DeLuca, E.E.: 2013, Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophys. J. Lett.767, L25. DOI.

    Article  ADS  Google Scholar 

  • Ohl, A.: 1966, Forecast of sunspot maximum number of cycle 20. Soln. Dannye9, 84.

    Google Scholar 

  • Osmane, A., Dimmock, A.P., Pulkkinen, T.I.: 2019, Jensen–Shannon complexity and permutation entropy analysis of geomagnetic auroral currents. J. Geophys. Res.124, 2541. DOI.

    Article  Google Scholar 

  • Pesnell, W.D.: 2008, Predictions of Solar Cycle 24. Solar Phys.252, 209. DOI.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Schatten, K.H.: 2018, An early prediction of the amplitude of Solar Cycle 25. Solar Phys.293, 112. DOI.

    Article  ADS  Google Scholar 

  • Sarp, V., Kilcik, A., Yurchyshyn, V., Rozelot, J., Ozguc, A.: 2018, Prediction of Solar Cycle 25: a non-linear approach. Mon. Not. Roy. Astron. Soc.481, 2981. DOI.

    Article  ADS  Google Scholar 

  • Scott, D.W.: 1979, On optimal and data-based histograms. Biometrika66, 605.

    Article  MathSciNet  Google Scholar 

  • Shannon, C.E.: 1948, A mathematical theory of communication. Bell Syst. Tech. J.27, 379.

    Article  MathSciNet  Google Scholar 

  • SILSO World Data Center: 1818 – 2019, The international sunspot number. International Sunspot Number Monthly Bulletin and online catalogue. www.sidc.be/silso/.

  • Silverman, B.W.: 1986, Density Estimation for Statistics and Data Analysis, Mono. Stat. App. Prob.26, Chapman and Hall, London.

    Book  Google Scholar 

  • Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot cycle 24: smallest cycle in 100 years? Geophys. Res. Lett.32, 1104. DOI.

    Article  ADS  Google Scholar 

  • Thompson, R.: 1993, A technique for predicting the amplitude of the solar cycle. Solar Phys.148, 383. DOI.

    Article  ADS  Google Scholar 

  • Upton, L.A., Hathaway, D.H.: 2018, An updated Solar Cycle 25 prediction with AFT: the modern minimum. Geophys. Res. Lett.45, 8091. DOI.

    Article  ADS  Google Scholar 

  • Wallis, K.: 2006, A note on the calculation of entropy from histograms. Dept. of Economics, University of Warwick, UK, Tech. Rep. mpra.ub.uni-muenchen.de/52856/.

  • Wang, Y.-M., Sheeley, N.: 2009, Understanding the geomagnetic precursor of the solar cycle. Astrophys. J. Lett.694, L11. DOI.

    Article  ADS  Google Scholar 

  • Wing, S., Johnson, J.R.: 2019, Applications of information theory in solar and space physics. Entropy21, 140. DOI.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the SIDC and SILSO teams for the daily and monthly international sunspot data and solar-cycle characteristics. We are thankful to D.S. Ramesh for introducing us to the Shannon entropy technique and suggestions on the manuscript. We thank the reviewers for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharati Kakad.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakad, B., Kumar, R. & Kakad, A. Randomness in Sunspot Number: A Clue to Predict Solar Cycle 25. Sol Phys 295, 88 (2020). https://doi.org/10.1007/s11207-020-01655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01655-7

Keywords

Navigation