Log in

Photospheric Injection of Magnetic Helicity: Connectivity-Based Flux Density Method

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Magnetic helicity quantifies the degree to which the magnetic field in a volume is globally sheared and/or twisted. This quantity is believed to play a key role in solar activity due to its conservation property. Helicity is continuously injected into the corona during the evolution of active regions (ARs). To better understand and quantify the role of magnetic helicity in solar activity, the distribution of magnetic helicity flux in ARs needs to be studied. The helicity distribution can be computed from the temporal evolution of photospheric magnetograms of ARs such as the ones provided by SDO/HMI and Hinode/SOT. Most recent analyses of photospheric helicity flux derived a proxy to the helicity-flux density based on the relative rotation rate of photospheric magnetic footpoints. Although this proxy allows a good estimate of the photospheric helicity flux, it is still not a true helicity flux density because it does not take into account the connectivity of the magnetic field lines. For the first time, we implement a helicity density that takes this connectivity into account. To use it for future observational studies, we tested the method and its precision on several types of models involving different patterns of helicity injection. We also tested it on more complex configurations – from magnetohydrodynamics (MHD) simulations – containing quasi-separatrix layers. We demonstrate that this connectivity-based proxy is best-suited to map the true distribution of photospheric helicity injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Amari, T., Aly, J.-J.: 2010, Observational constraints on well-posed reconstruction methods and the optimization-Grad–Rubin method. Astron. Astrophys. 522, A52. doi: 10.1051/0004-6361/200913058 .

    Article  ADS  Google Scholar 

  • Amari, T., Boulmezaoud, T.Z., Mikic, Z.: 1999, An iterative method for the reconstruction break of the solar coronal magnetic field. I. Method for regular solutions. Astron. Astrophys. 350, 1051 – 1059.

    ADS  Google Scholar 

  • Amari, T., Boulmezaoud, T.Z., Aly, J.J.: 2006, Well posed reconstruction of the solar coronal magnetic field. Astron. Astrophys. 446, 691 – 705. doi: 10.1051/0004-6361:20054076 .

    Article  ADS  MATH  Google Scholar 

  • Aulanier, G., Pariat, E., Démoulin, P.: 2005, Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes. Astron. Astrophys. 444, 961 – 976. doi: 10.1051/0004-6361:20053600 .

    Article  ADS  Google Scholar 

  • Bagalá, L.G., Mandrini, C.H., Rovira, M.G., Démoulin, P.: 2000, Magnetic reconnection: a common origin for flares and AR interconnecting arcs. Astron. Astrophys. 363, 779 – 788.

    ADS  Google Scholar 

  • Baker, D., van Driel-Gesztelyi, L., Mandrini, C.H., Démoulin, P., Murray, M.J.: 2009, Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows. Astrophys. J. 705, 926 – 935. doi: 10.1088/0004-637X/705/1/926 .

    Article  ADS  Google Scholar 

  • Berger, M.A.: 1984, Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30, 79 – 104. doi: 10.1080/03091928408210078 .

    Article  ADS  Google Scholar 

  • Berger, M.A.: 2003, Topological quantities in magnetohydrodynamics. In: Ferriz-Mas, A., Núñez, M. (eds.) Advances in Nonlinear Dynamics, Taylor and Francis, London, 345 – 383.

    Google Scholar 

  • Chae, J.: 2001, Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of field line footpoints. Astrophys. J. Lett. 560, L95 – L98. doi: 10.1086/324173 .

    Article  ADS  Google Scholar 

  • Chae, J.: 2007, Measurements of magnetic helicity injected through the solar photosphere. Adv. Space Res. 39, 1700 – 1705. doi: 10.1016/j.asr.2007.01.035 .

    Article  ADS  Google Scholar 

  • Chae, J., Moon, Y.-J., Park, Y.-D.: 2004, Determination of magnetic helicity content of solar active regions from SOHO/MDI magnetograms. Solar Phys. 223, 39 – 55. doi: 10.1007/s11207-004-0938-9 .

    Article  ADS  Google Scholar 

  • Chandra, R., Pariat, E., Schmieder, B., Mandrini, C.H., Uddin, W.: 2010, How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? Solar Phys. 261, 127 – 148. doi: 10.1007/s11207-009-9470-2 .

    Article  ADS  Google Scholar 

  • Démoulin, P.: 2006, Extending the concept of separatrices to QSLs for magnetic reconnection. Adv. Space Res. 37, 1269 – 1282. doi: 10.1016/j.asr.2005.03.085 .

    Article  ADS  Google Scholar 

  • Démoulin, P.: 2007, Recent theoretical and observational developments in magnetic helicity studies. Adv. Space Res. 39, 1674 – 1693. doi: 10.1016/j.asr.2006.12.037 .

    Article  ADS  Google Scholar 

  • Démoulin, P., Berger, M.A.: 2003, Magnetic energy and helicity fluxes at the photospheric level. Solar Phys. 215, 203 – 215. doi: 10.1023/A:1025679813955 .

    Article  ADS  Google Scholar 

  • Démoulin, P., Pariat, E., Berger, M.A.: 2006, Basic properties of mutual magnetic helicity. Solar Phys. 233, 3 – 27. doi: 10.1007/s11207-006-0010-z .

    Article  ADS  Google Scholar 

  • Démoulin, P., Pariat, E.: 2009, Modelling and observations of photospheric magnetic helicity. Adv. Space Res. 43, 1013 – 1031. doi: 10.1016/j.asr.2008.12.004 .

    Article  ADS  Google Scholar 

  • Démoulin, P., Priest, E.R., Lonie, D.P.: 1996, Three-dimensional magnetic reconnection without null points. 2. Application to twisted flux tubes. J. Geophys. Res. 101, 7631 – 7646. doi: 10.1029/95JA03558 .

    Article  ADS  Google Scholar 

  • Démoulin, P., Bagala, L.G., Mandrini, C.H., Henoux, J.C., Rovira, M.G.: 1997, Quasi-separatrix layers in solar flares. II. Observed magnetic configurations. Astron. Astrophys. 325, 305 – 317.

    ADS  Google Scholar 

  • Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Z., Aulanier, G., Young, A.: 2002, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978. Astron. Astrophys. 382, 650 – 665. doi: 10.1051/0004-6361:20011634 .

    Article  ADS  Google Scholar 

  • DeVore, C.R.: 2000, Magnetic helicity generation by solar differential rotation. Astrophys. J. 539, 944 – 953. doi: 10.1086/309274 .

    Article  ADS  Google Scholar 

  • Emonet, T., Moreno-Insertis, F.: 1998, The physics of twisted magnetic tubes rising in a stratified medium: two-dimensional results. Astrophys. J. 492, 804 – 821. doi: 10.1086/305074 .

    Article  ADS  Google Scholar 

  • Finn, J.M., Antonsen, J.T.M.: 1985, Magnetic helicity: what is it and what is it good for? Comments Plasma Phys. Control. Fusion 9, 111 – 120.

    Google Scholar 

  • Georgoulis, M.K., Rust, D.M., Pevtsov, A.A., Bernasconi, P.N., Kuzanyan, K.M.: 2009, Solar magnetic helicity injected into the heliosphere: magnitude, balance, and periodicities over solar cycle 23. Astrophys. J. Lett. 705, L48 – L52. doi: 10.1088/0004-637X/705/1/L48 .

    Article  ADS  Google Scholar 

  • Green, L.M., López Fuentes, M.C., Mandrini, C.H., van Driel-Gesztelyi, L., Démoulin, P.: 2002a, Long-term helicity evolution in NOAA active region 8100. In: Sawaya-Lacoste, H. (ed.) SOLSPA 2001, Proceedings of the Second Solar Cycle and Space Weather Euroconference SP-477, ESA, Noordwijk, 43 – 46.

    Google Scholar 

  • Green, L.M., López Fuentes, M.C., Mandrini, C.H., Démoulin, P., Van Driel-Gesztelyi, L., Culhane, J.L.: 2002b, The magnetic helicity budget of a CME-prolific active region. Solar Phys. 208, 43 – 68. doi: 10.1023/A:1019658520033 .

    Article  ADS  Google Scholar 

  • Jeong, H., Chae, J.: 2007, Magnetic helicity injection in active regions. Astrophys. J. 671, 1022 – 1033. doi: 10.1086/522666 .

    Article  ADS  Google Scholar 

  • **g, J., Park, S.-H., Liu, C., Lee, J., Wiegelmann, T., Xu, Y., Deng, N., Wang, H.: 2012, Evolution of relative magnetic helicity and current helicity in NOAA active region 11158. Astrophys. J. Lett. 752, L9. doi: 10.1088/2041-8205/752/1/L9 .

    Article  ADS  Google Scholar 

  • Kazachenko, M.D., Canfield, R.C., Longcope, D.W., Qiu, J.: 2012, Predictions of energy and helicity in four major eruptive solar flares. Solar Phys. 277, 165 – 183. doi: 10.1007/s11207-011-9786-6 .

    Article  ADS  Google Scholar 

  • Kusano, K., Suzuki, Y., Nishikawa, K.: 1995, A solar flare triggering mechanism based on the Woltjer–Taylor minimum energy principle. Astrophys. J. 441, 942 – 951. doi: 10.1086/175413 .

    Article  ADS  Google Scholar 

  • Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2002, Measurement of magnetic helicity injection and free energy loading into the solar corona. Astrophys. J. 577, 501 – 512. doi: 10.1086/342171 .

    Article  ADS  Google Scholar 

  • Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2004a, The trigger mechanism of solar flares in a coronal arcade with reversed magnetic shear. Astrophys. J. 610, 537 – 549. doi: 10.1086/421547 .

    Article  ADS  Google Scholar 

  • Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2004b, Study of magnetic helicity in the solar corona. In: Sakurai, T., Sekii, T. (eds.) The Solar-B Mission and the Forefront of Solar Physics, ASP Conf. Ser. 325, 175 – 184.

    Google Scholar 

  • LaBonte, B.J., Georgoulis, M.K., Rust, D.M.: 2007, Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671, 955 – 963. doi: 10.1086/522682 .

    Article  ADS  Google Scholar 

  • Linton, M.G., Antiochos, S.K.: 2002, Theoretical energy analysis of reconnecting twisted magnetic flux tubes. Astrophys. J. 581, 703 – 717. doi: 10.1086/344218 .

    Article  ADS  Google Scholar 

  • Linton, M.G., Antiochos, S.K.: 2005, Magnetic flux tube reconnection: tunneling versus slingshot. Astrophys. J. 625, 506 – 521. doi: 10.1086/429585 .

    Article  ADS  Google Scholar 

  • Linton, M.G., Dahlburg, R.B., Antiochos, S.K.: 2001, Reconnection of twisted flux tubes as a function of contact angle. Astrophys. J. 553, 905 – 921. doi: 10.1086/320974 .

    Article  ADS  Google Scholar 

  • Longcope, D.W.: 2004, Inferring a photospheric velocity field from a sequence of vector magnetograms: the minimum energy fit. Astrophys. J. 612, 1181 – 1192. doi: 10.1086/422579 .

    Article  ADS  Google Scholar 

  • Longcope, D.W., Pevtsov, A.A.: 2003, Helicity transport and generation in the solar convection zone. Adv. Space Res. 32, 1845 – 1853. doi: 10.1016/S0273-1177(03)90618-1 .

    Article  ADS  Google Scholar 

  • Low, B.C.: 1997, The role of coronal mass ejections in solar activity. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, AGU Geophys. Monogr. 99, 39 – 48. doi: 10.1029/GM099p0039 .

    Chapter  Google Scholar 

  • Luoni, M.L., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2011, Twisted flux tube emergence evidenced in longitudinal magnetograms: magnetic tongues. Solar Phys. 270, 45 – 74. doi: 10.1007/s11207-011-9731-8 .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Démoulin, P., Bagala, L.G., van Driel-Gesztelyi, L., Henoux, J.C., Schmieder, B., Rovira, M.G.: 1997, Evidence of magnetic reconnection from Hα, soft X-ray and photospheric magnetic field observations. Solar Phys. 174, 229 – 240. doi: 10.1023/A:1004950009970 .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Green, L.M., López Fuentes, M.C.: 2004, Magnetic helicity budget of solar-active regions from the photosphere to magnetic clouds. Astrophys. Space Sci. 290, 319 – 344. doi: 10.1023/B:ASTR.0000032533.31817.0e .

    Article  ADS  MATH  Google Scholar 

  • Mandrini, C.H., Démoulin, P., Schmieder, B., Deluca, E.E., Pariat, E., Uddin, W.: 2006, Companion event and precursor of the X17 flare on 28 October 2003. Solar Phys. 238, 293 – 312. doi: 10.1007/s11207-006-0205-3 .

    Article  ADS  Google Scholar 

  • Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: 2009, The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559 – 578. doi: 10.1088/0004-637X/700/1/559 .

    Article  ADS  Google Scholar 

  • Moon, Y.-J., Chae, J., Choe, G.S., Wang, H., Park, Y.D., Yun, H.S., Yurchyshyn, V., Goode, P.R.: 2002, Flare activity and magnetic helicity injection by photospheric horizontal motions. Astrophys. J. 574, 1066 – 1073. doi: 10.1086/340975 .

    Article  ADS  Google Scholar 

  • Nindos, A., Zhang, J., Zhang, H.: 2003, The magnetic helicity budget of solar active regions and coronal mass ejections. Astrophys. J. 594, 1033 – 1048. doi: 10.1086/377126 .

    Article  ADS  Google Scholar 

  • Pariat, E., Démoulin, P., Berger, M.A.: 2005, Photospheric flux density of magnetic helicity. Astron. Astrophys. 439, 1191 – 1203. doi: 10.1051/0004-6361:20052663 .

    Article  ADS  Google Scholar 

  • Pariat, E., Démoulin, P., Nindos, A.: 2007, How to improve the maps of magnetic helicity injection in active regions? Adv. Space Res. 39, 1706 – 1714. doi: 10.1016/j.asr.2007.02.047 .

    Article  ADS  Google Scholar 

  • Pariat, E., Nindos, A., Démoulin, P., Berger, M.A.: 2006, What is the spatial distribution of magnetic helicity injected in a solar active region? Astron. Astrophys. 452, 623 – 630. doi: 10.1051/0004-6361:20054643 .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Canfield, R.C., Metcalf, T.R.: 1995, Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. Lett. 440, L109 – L112. doi: 10.1086/187773 .

    Article  ADS  Google Scholar 

  • Romano, P., Zuccarello, F.: 2011, Flare occurrence and the spatial distribution of the magnetic helicity flux. Astron. Astrophys. 535, A1. doi: 10.1051/0004-6361/201117594 .

    Article  ADS  Google Scholar 

  • Romano, P., Pariat, E., Sicari, M., Zuccarello, F.: 2011, A solar eruption triggered by the interaction between two magnetic flux systems with opposite magnetic helicity. Astron. Astrophys. 525, A13. doi: 10.1051/0004-6361/201014437 .

    Article  ADS  Google Scholar 

  • Rust, D.M.: 1994, Spawning and shedding helical magnetic fields in the solar atmosphere. Geophys. Res. Lett. 21, 241 – 244. doi: 10.1029/94GL00003 .

    Article  ADS  Google Scholar 

  • Savcheva, A., Pariat, E., van Ballegooijen, A., Aulanier, G., DeLuca, E.: 2012, Sigmoidal active region on the Sun: comparison of a magnetohydrodynamical simulation and a nonlinear force-free field model. Astrophys. J. 750, 15. doi: 10.1088/0004-637X/750/1/15 .

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2005, Local correlation tracking and the magnetic induction equation. Astrophys. J. Lett. 632, L53 – L56. doi: 10.1086/497633 .

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2006, Tracking magnetic footpoints with the magnetic induction equation. Astrophys. J. 646, 1358 – 1391. doi: 10.1086/505015 .

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2008, Tracking vector magnetograms with the magnetic induction equation. Astrophys. J. 683, 1134 – 1152. doi: 10.1086/589434 .

    Article  ADS  Google Scholar 

  • Taylor, J.B.: 1974, Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139 – 1141. doi: 10.1103/PhysRevLett.33.1139 .

    Article  ADS  Google Scholar 

  • Titov, V.S., Hornig, G., Démoulin, P.: 2002, Theory of magnetic connectivity in the solar corona. J. Geophys. Res. 107, 1164. doi: 10.1029/2001JA000278 .

    Article  Google Scholar 

  • Valori, G., Démoulin, P., Pariat, E.: 2012, Comparing values of the relative magnetic helicity in finite volumes. Solar Phys. 278, 347 – 366. doi: 10.1007/s11207-012-9951-6 .

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Mandrini, C.H., Thompson, B., Plunkett, S., Aulanier, G., Démoulin, P., Schmieder, B., de Forest, C.: 1999, Long-term magnetic evolution of an AR and its CME activity. In: Schmieder, B., Hofmann, A., Staude, J. (eds.) Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations, ASP Conf. Ser. 184, 302 – 306.

    Google Scholar 

  • Welsch, B.T., Fisher, G.H., Abbett, W.P., Regnier, S.: 2004, ILCT: recovering photospheric velocities from magnetograms by combining the induction equation with local correlation tracking. Astrophys. J. 610, 1148 – 1156. doi: 10.1086/421767 .

    Article  ADS  Google Scholar 

  • Welsch, B.T., Abbett, W.P., De Rosa, M.L., Fisher, G.H., Georgoulis, M.K., Kusano, K., Longcope, D.W., Ravindra, B., Schuck, P.W.: 2007, Tests and comparisons of velocity-inversion techniques. Astrophys. J. 670, 1434 – 1452. doi: 10.1086/522422 .

    Article  ADS  Google Scholar 

  • Welsch, B.T., Li, Y., Schuck, P.W., Fisher, G.H.: 2009, What is the relationship between photospheric flow fields and solar flares? Astrophys. J. 705, 821 – 843. doi: 10.1088/0004-637X/705/1/821 .

    Article  ADS  Google Scholar 

  • Yamada, M.: 1999, Study of magnetic helicity and relaxation phenomena in laboratory plasmas. In: Brown, M.R., Canfield, R.C., Pevtsov, A.A. (eds.) Magnetic Helicity in Space and Laboratory Plasmas, AGU Geophys. Monogr. 11, 129 – 140. doi: 10.1029/GM111p0129 .

    Chapter  Google Scholar 

  • Yamamoto, T.T., Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2005, Magnetic helicity injection and sigmoidal coronal loops. Astrophys. J. 624, 1072 – 1079. doi: 10.1086/429363 .

    Article  ADS  Google Scholar 

  • Yang, S., Zhang, H.: 2012, Large-scale magnetic helicity fluxes estimated from MDI magnetic synoptic charts over the solar cycle 23. Astrophys. J. 758, 61. doi: 10.1088/0004-637X/758/1/61 .

    Article  ADS  Google Scholar 

  • Zhang, M., Flyer, N., Low, B.C.: 2006, Magnetic field confinement in the corona: the role of magnetic helicity accumulation. Astrophys. J. 644, 575 – 586. doi: 10.1086/503353 .

    Article  ADS  Google Scholar 

  • Zhang, M., Flyer, N.: 2008, The dependence of the helicity bound of force-free magnetic fields on boundary conditions. Astrophys. J. 683, 1160 – 1167. doi: 10.1086/589993 .

    Article  ADS  Google Scholar 

  • Zhang, M., Flyer, N., Low, B.C.: 2012, Magnetic helicity of self-similar axisymmetric force-free fields. Astrophys. J. 755, 78. doi: 10.1088/0004-637X/755/1/78 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Canou for providing the potential and linear force-free fields computed with the XTRAPOL numerical code developed by T. Amari and supported by the Centre National d’Etudes Spatiales & the Ecole Polytechnique. The authors thank the referee for helpful comments that improved the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dalmasse.

Appendix: Analytical Solutions for G θ

Appendix: Analytical Solutions for G θ

In the following, we use the same notation as defined in Section 3. The flux-transport velocity fields are given by Equations (11) – (15). The total magnetic flux in the positive (negative) polarity is called Φ+ (resp. −Φ, with Φ±>0). For generality purpose, Φ can be different from Φ+, and no specific assumption is made concerning the magnetic field configuration.

1.1 A.1 Two Separating Magnetic Polarities

We consider two opposite magnetic polarities separating in the x-direction at constant speed and without any rotation. The flux-transport velocity field is given by Equation (11). Because the velocity field is constant in each polarity, the terms of Equation (4) associated to (M,M′) in the same polarity are zero as a consequence of u′=u.

In this case, we have uu′=∓2U 0 e x when ±B n(M)>0 and ∓B n(M′)>0, which leads to

$$ \mathbf{M}'\mathbf{M} \times \bigl(\mathbf {u}-\mathbf {u}' \bigr) \big\vert_{\mathrm{n}}= \pm 2U_{0} \mathbf{M}' \mathbf{M} \cdot \mathbf{e}_{y}. $$
(25)

Thus, Equation (4) leads to

$$ G_{\theta }\bigl(M(\mathbf {x})\bigr)=\mp \frac{U_{0} B_{\mathrm {n}}}{\pi} \biggl(\int_{M' \ \mathrm{in} \ P_{\mp}} B_{\mathrm {n}}' \frac{\mathbf{M}'\mathbf{M}}{|\mathbf{M}'\mathbf{M}|^{2}} \,\mathrm {d} {\mathcal{S}} ' \biggr) \cdot \mathbf{e}_{y},\quad \textrm{for} \ \pm B_{\mathrm {n}}(M)>0. $$
(26)

This integral can be computed by analogy to the electric field created by a 2D distribution of charge, \(\sigma (M)= B_{\mathrm {n}}'(M)\), of an infinite cylinder of radius R (of vertical axis crossing the z=0 plane at point O ), using Gauss theorem, i.e.,

$$ \int_{M' \ \mathrm{in} \ P_{\mp}} B_{\mathrm {n}}' \frac{\mathbf{M}'\mathbf{M}}{|\mathbf{M}'\mathbf{M}|^{2}} \,\mathrm {d} {\mathcal{S}} ' = \mp \frac{\mathbf{O}_{\mp} \mathbf{M}}{|\mathbf{O}_{\mp} \mathbf{M}|^{2}}\ \Phi_{\mp}. $$
(27)

Hence, we find that the helicity flux density is given by Equation (12).

1.2 A.2 One Polarity Rigidly Rotating Around the Other

In this model, the negative polarity rigidly rotates around the positive one. The velocity field is given by Equation (13). There are four cases to consider.

  • c1. If B n(M)>0 and B n(M′)>0, then uu′=0 and the associated term of Equation (4) is null.

  • c2. If B n(M)>0 and B n(M′)<0, then uu′=−Ωe z ×O + M′ and

    $$ \mathbf{M}'\mathbf{M} \times \bigl(\mathbf {u}-\mathbf {u}' \bigr) \big\vert_{\mathrm{n}} = - \bigl(\mathbf{M}'\mathbf{M} \cdot \mathbf{O}_{+}\mathbf{M}'\bigr) \Omega. $$
    (28)

    The helicity flux density is then (using O + M′=O + MMM)

    (29)

    which, by regrou** terms, leads to Equation (14).

  • c3. If B n(M)<0 and B n(M′)>0, then uu′=Ωe z ×O + M and

    $$ \mathbf{M}'\mathbf{M} \times \bigl(\mathbf {u}-\mathbf {u}' \bigr) \big\vert_{\mathrm{n}}=\bigl(\mathbf{M}'\mathbf{M} \cdot \mathbf{O}_{+}\mathbf{M}\bigr) \Omega, $$
    (30)

    which, using Equation (27) leads to

    $$ G_{\theta }\bigl(M(\mathbf {x})\bigr) = - \frac{\Omega B_{\mathrm {n}}}{2\pi} \Phi_{+}, \quad \textrm{for} \ \bigl(B_{\mathrm {n}}(M)<0, B_{\mathrm {n}}\bigl(M'\bigr)>0 \bigr). $$
    (31)
  • c4. If B n(M)<0 and B n(M′)<0, uu′=Ωe z ×MM and

    $$ \mathbf{M}'\mathbf{M} \times \bigl(\mathbf {u}-\mathbf {u}' \bigr) \big\vert_{\mathrm{n}}= \big|\mathbf{M}'\mathbf{M}\big|^{2} \Omega, $$
    (32)

    leading to

    $$ G_{\theta }\bigl(M(\mathbf {x})\bigr) = \frac{\Omega B_{\mathrm {n}}}{2\pi} \Phi_{-}, \quad \textrm{for} \ \bigl(B_{\mathrm {n}}(M)<0, B_{\mathrm {n}}\bigl(M'\bigr)<0 \bigr). $$
    (33)

    Then the total helicity flux density within the region B n(M)<0 is therefore

    $$ G_{\theta }\bigl(M(\mathbf {x})\bigr) = - \frac{\Omega B_{\mathrm {n}}}{2\pi}\ (\Phi_{+} - \Phi_{-}),\quad \textrm{for} \ B_{\mathrm {n}}(M)<0. $$
    (34)

    Note that in the particular case of two magnetic-flux-balanced polarities, Φ+ and G θ =0 for B n(M)<0.

1.3 A.3 Two Counter-rotating Magnetic Polarities

In this model, the positive polarity rotates clockwise around its center, while the negative polarity rotates counterclockwise around its center. The velocity field is given by Equation (15). There are four cases to consider, which, by symmetry, reduce to two cases.

  • c1. If B n(M)>0 and B n(M′)>0, we have uu′=−Ωe z ×MM, which leads to

    $$ \mathbf{M}'\mathbf{M} \times \bigl(\mathbf {u}-\mathbf {u}' \bigr) \big\vert_{\mathrm{n}}= -\big|\mathbf{M}'\mathbf{M}\big|^{2} \Omega, $$
    (35)

    giving

    $$ G_{\theta }\bigl(M(\mathbf {x})\bigr) = \frac{\Omega B_{\mathrm {n}}}{2\pi} \Phi_{+}, \quad \textrm{for} \ \bigl(B_{\mathrm {n}}(M)>0, B_{\mathrm {n}}\bigl(M'\bigr)>0 \bigr). $$
    (36)
  • c2. If B n(M)>0 and B n(M′)<0, we have uu′=Ωe z ×(MMO + MO M), which leads to

    $$ \mathbf{M}'\mathbf{M} \times \bigl(\mathbf {u}-\mathbf {u}' \bigr) \big\vert_{\mathrm{n}}=\big|\mathbf{M}'\mathbf{M}\big|^{2} \Omega - \bigl( \mathbf{M}'\mathbf{M} \cdot ( \mathbf{O}_{+}\mathbf{M} + \mathbf{O}_{-} \mathbf{M}) \bigr) \Omega, $$
    (37)

    giving (using O + M=O + O +O M)

    (38)

    for (B n(M)>0,B n(M′)<0).

    The total helicity flux density in the positive polarity is obtained by summing Equations (36) and (38) and supposing Φ+0 to simplify

    $$ G_{\theta }\bigl(M(\mathbf {x})\bigr)= - \frac{\Omega B_{\mathrm {n}}}{2\pi} \frac{\mathbf{O}_{-}\mathbf{M} \cdot \mathbf{O}_{+}\mathbf{O}_{-}}{|\mathbf{O}_{-}\mathbf{M}|^{2}} \Phi_{0}, \quad \textrm{for} \ B_{\mathrm {n}}(M)>0. $$
    (39)

Following the same derivation as above for B n(M)<0, we find Equation (16).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalmasse, K., Pariat, E., Démoulin, P. et al. Photospheric Injection of Magnetic Helicity: Connectivity-Based Flux Density Method. Sol Phys 289, 107–136 (2014). https://doi.org/10.1007/s11207-013-0326-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0326-4

Keywords

Navigation