Log in

Photocatalytic Activity of Zinc Oxide Nanoparticles Prepared by Laser Ablation in a Decomposition Reaction of Rhodamine B

  • Published:
Russian Physics Journal Aims and scope

The development of the routes for synthesizing photocatalysts and the methods for investigating their properties is very appealing for applications in ecology and renewable energy production. Zinc oxide is one of the promising photocatalytic materials. In this study, ZnO nanopowders are produced by pulsed laser ablation (Nd:YAG laser, 1064 nm, 7 ns) in water and air, followed by their heat treatment. The structure and composition of the resulting powders are examined using transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry. The nature of the defect states of nanoparticles is investigated using fluorescence spectroscopy. Their photocatalytic activity is tested during photodegradation of Rhodamine B under excitation by the broadband visible and UV-visible light. The influence of the composition and morphology of zinc oxide and the nature of defect states on its photocatalytic activity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. O. Ibhadon and P. Fitzpatrick, Catalysts, 3, No. 1, 189 (2013).

    Article  Google Scholar 

  2. K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, Water Research, 88, 428 (2016).

    Article  Google Scholar 

  3. A. Ajmal, I. Majeed, R. N. Malik, et al., RSC Adv., 4, No. 70, 37003 (2014).

    Article  Google Scholar 

  4. E. D. Fakhrutdinova, A. V. Shabalina, M. A. Gerasimova, et al., Materials, 13, No. 9, 2054 (2020).

    Article  ADS  Google Scholar 

  5. Ü. Özgür, Ya. I. Alivov, C. Liu, et al., J. Appl. Phys., 98, 041301 (2005).

    Article  ADS  Google Scholar 

  6. S. Sakthivel, B. Neppolian, M. V. Shankar, et al., Sol. Energy Mater. Sol. Cells, 77, 65 (2003).

    Article  Google Scholar 

  7. N. Kumaresan, K. Ramamurthi, R. R. Babu, et al., Appl. Surf. Sci., 418, 138 (2017).

    Article  ADS  Google Scholar 

  8. H. Song, K. Zhu, Y. Liu, and X. Zhai, Russ. J. Phys. Chem. A, 91, No. 1, 59 (2017).

    Article  Google Scholar 

  9. J. Wang, R. Chen, Y. **a, et al., Ceram. Int., 43, 1870 (2017).

    Article  Google Scholar 

  10. A. K. Zaka, W. H. Majid, and H. Z. Wang, Ultrason. Sonochem., 20, 395 (2013).

    Article  Google Scholar 

  11. B. Abarna, T. Preethi, A. Karunanithi, and G. R. Rajarajeswari, Mater. Sci. Semicond. Process., 56, 243 (2016).

    Article  Google Scholar 

  12. H. Zeng, X.-W. Du, S. C. Singh, et al., Adv. Funct. Mater., 22, 1333 (2012).

    Article  Google Scholar 

  13. S. Reichenberger, G. Marzun, M. Muhler, and S. Barcikowski, ChemCatChem., 11, 1 (2019).

    Article  Google Scholar 

  14. C. Liang, Y. Shimizu, and M. Masuda, Chem. Mater., 16, 963 (2004).

    Article  Google Scholar 

  15. V. A. Svetlichnyi and I. N. Lapin, Russ. Phys. J., 56, No. 5, 581 (2013).

    Article  Google Scholar 

  16. M. A. Gonda, Q. A. Drmosh, and Z. H. Yamani, Appl. Surf. Sci., 256, 298 (2009).

    Article  ADS  Google Scholar 

  17. T. Goto, M. Honda, S. A. Kulinich, et al., Jpn. J. Appl. Phys., 54, 070305 (2015).

    Google Scholar 

  18. V. A. Svetlichnyi, A. V. Shabalina, I. N. Lapin, et al., Appl. Surf. Sci., 467468, 402 (2019).

    Google Scholar 

  19. R. G. Nikov, A. O. Dikovska, N. N. Nedyalkov, et al., Appl. Phys. A, 123, 657 (2017).

    Article  ADS  Google Scholar 

  20. E. A. Gavrilenko, D. A. Goncharova, I. N. Lapin, et al., Materials, 12, No. 1, 186 (2019).

    Article  ADS  Google Scholar 

  21. D. Panda and T. Y. Tseng, J. Mater. Sci., 48, 6849 (2013).

    Article  ADS  Google Scholar 

  22. M. Honda, T. Goto, and T. Owashi, Phys. Chem. Chem. Phys., 18, 23628 (2016).

    Article  Google Scholar 

  23. T. H. Hsieh, J. Y. Chen, C. W. Huang, and W. W. Wu, Chem. Mater., 28, No. 12, 4507 (2016).

    Article  Google Scholar 

  24. Z. Li, X. Shen, X. Feng, et al., Thermochim. Acta, 438, 102 (2005).

    Article  Google Scholar 

  25. J. Wang, R. Chen, L. **ang, and S. Komarneni, Ceram. Int., 44, 7357 (2018).

    Article  Google Scholar 

  26. X. Zhang, J. Qin, Y. Xue, et al., Sci. Rep., 4, 4596 (2014).

    Article  Google Scholar 

  27. L. Song, Y. Wang, and J. Ma, Appl. Surf. Sci., 442, 101 (2018).

    Article  ADS  Google Scholar 

  28. K. Surender and P. D. Sahare, Nano, 7, No. 3, 1250022 (2012).

    Article  Google Scholar 

  29. L. K. Jangir, Y. Kumari, A. Kumar, et al., Mater. Chem. Front., 1, 1413 (2017).

    Article  Google Scholar 

  30. S. Chakraborty, S. Dhara, T. R. Ravindran, et al., AIP Advances, 1, 032135 (2011).

    Google Scholar 

  31. M. D. McCluskey and S. J. Jokela, J. Appl. Phys., 106, 071101 (2009).

    Article  ADS  Google Scholar 

  32. J. E. Eixenberger, C. B. Anders, K. Wada, et al., ACS Appl. Mater. Interfaces, 11, 24933 (2019).

    Article  Google Scholar 

  33. T. Tu, N. T. Tuan, N. V. Dung, et al., J. Lumin., 156, 199 (2014).

    Article  Google Scholar 

  34. S. Brahma and A. Shivashankar, Mater. Lett., 164, 235 (2016).

    Article  Google Scholar 

  35. Z. Liu, X. **g, L. Wang, and Y. Li, J. Electrochem. Soc., 153, No. 12, 1035 (2006).

    Article  Google Scholar 

  36. K. S. Babu, A. R. Reddy, C. Sujatha, et al., Mater. Lett., 110, 10 (2013).

    Article  Google Scholar 

  37. J. Čížek, J. Valenta, P. Hruška, et al., Appl. Phys. Lett., 106, 251902 (2015).

    Google Scholar 

  38. M. Wang, Y. Zhou, Y. Zhang, et al., Appl. Phys. Lett., 100, 101906 (2012).

    Google Scholar 

  39. Y. Mingcai, Z. Li, J. Kou, and Z. Zou, Environ. Sci. Technol., 43, 8361 (2009).

    Article  ADS  Google Scholar 

  40. X. Hu, T. Mohamood, W. Ma, et al., J. Phys. Chem. B, 110, 26012 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Gavrilenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 127–134, August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilenko, E.A., Goncharova, D.A., Lapin, I.N. et al. Photocatalytic Activity of Zinc Oxide Nanoparticles Prepared by Laser Ablation in a Decomposition Reaction of Rhodamine B. Russ Phys J 63, 1429–1437 (2020). https://doi.org/10.1007/s11182-020-02188-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02188-z

Keywords

Navigation