Log in

Polyalkoxybenzenes from plant raw materials 1. Isolation of polyalkoxybenzenes from CO2 extracts of Umbelliferae plant seeds

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

For the search for a domestic natural source of allylpolyalkoxybenzenes and development of an effective process for their isolation, CO2 extracts of several varieties of parsley, dill, celery, caraway, and nutmeg were analyzed systematically for the first time by GC/MS and GLC techniques. The varieties with high contents of myristicin, elemicin, allyltetramethoxybenzene, apiol, and dillapiol were identified. The conditions of CO2 extraction for obtaining concentrates with minimum contents of the distillation residues were selected. Using high performance fractional distillation, polyalkoxyallylbenzenes with 98–99% purity were isolated from the concentrates on a pilot unit. By isomerization of some allylbenzenes followed by ozonolysis under specially selected conditions, apiol-and dillapiolaldehydes were obtained in 75–80% yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. N. Stas’eva, N. N. Latin, and G. I. Kas’yanov, CO 2-Ekstrakty Kompanii Karavan — novyi klass natural’nykh pishchevykh dobavok [CO 2-Extracts of the Karavan Company as a New Class of Natural Food Additives], KNIIKhP, Krasnodar, 2006 (in Russian).

    Google Scholar 

  2. B. Diaz-Reinoso, A. Moure, H. Dominguez, and J. C. Parajo, J. Agric. Food Chem., 2006, 54, 2441.

    Article  CAS  Google Scholar 

  3. G. Singh, P. Marimuthu, C. S. Heluani, and C. A. N. Catalan, J. Agric. Food Chem., 2006, 54, 174.

    Article  CAS  Google Scholar 

  4. B. N. Golovkin, R. N. Rudenskaya, I. A. Trofimova, and A. I. Shreter, Biologicheski aktivnye veshchestva rastitel’nogo proiskhozhdeniya [Biologically Active Compounds of Plant Origin], Nauka, Moscow, 2001–2002, Vols. I–III (in Russian).

    Google Scholar 

  5. US Pat. 4876277; Chem. Abstrs, 1990, 112, 216908f.

  6. Canada Pat. 2198645; Chem. Abstrs, 1999, 131, 27947z.

  7. E. Stahl and H. Jork, Archiv der Pharmazie, 1964, 297, 273.

    Article  CAS  Google Scholar 

  8. J. E. Simon and J. Quinn, J. Agric. Food Chem., 1988, 38, 467.

    Article  Google Scholar 

  9. B. Vinogradov, N. Vinogradova, L. Golan, Aromaterapiya, Fultus Publishing, Palo Alto, USA, 2006.

    Google Scholar 

  10. E. P. Lichtenstein, T. T. Liang, K. R. Schulz, H. R. Schnoes, and G. T. Carter, J. Agric. Food Chem., 1974, 22, 658.

    Article  CAS  Google Scholar 

  11. S. S. Tomar, M. L. Maheshwari, and S. K. Mukerjee, J. Agric. Food Chem., 1979, 27, 548.

    Article  Google Scholar 

  12. I. V. Krotova and A. A. Efremov, Khimiya rastitel’nogo syr’ya [The Chemistry of Plant Raw Materials], 2002, No. 3, 29 (in Russian).

  13. R. Huopalahti and R. R. Linko, J. Agric. Food Chem., 1983, 31, 331.

    Article  CAS  Google Scholar 

  14. M. G. Lopez, I. R. Sanchez-Mendoza, and Ochoa-Alejo, J. Agric. Food Chem., 1999, 47, 3292.

    Article  CAS  Google Scholar 

  15. S. A. Alimukhamedov, N. A. Maksudov, M. I. Goryaev, and F. S. Sharipova, Khim. Farm. Zh., 1972, 9, 15 [Pharm. Chem. J., 1972, 9 (Engl. Transl.)].

    Google Scholar 

  16. H. O. Bernhard and K. Thiele, Helv. Chim. Acta, 1978, 61, 2273.

    Article  CAS  Google Scholar 

  17. K. Yakushi**, T. Tohshima, R. Suzuki, H. Murata, S.-T. Lu, and H. Furukawa, Chem. Pharm. Bull., 1983, 31, 2879.

    CAS  Google Scholar 

  18. R. Mata, I. Moralez, O. Perez, I. Rivero-Cruz, L. Acevedo, I. Enriquez-Mendoza, R. Bye, S. Franzblau, and B. Timmermann, J. Nat. Prod., 2004, 67, 1961.

    Article  CAS  Google Scholar 

  19. B. Bozin, N. Mimica-Dukic, N. Simin, and G. Anackov, J. Agric. Food Chem., 2006, 54, 1822.

    Article  CAS  Google Scholar 

  20. I. Heilbronn and R. M. Banberry, Dictionary of Organic Compounds, Imperial Chemical Ltd, London, 1946.

    Google Scholar 

  21. Beilstein (4te Aufl.), Ed. F. Richter, Springer-Verlag, Berlin-Göttingen-Heidelberg, (a) Myristicine E (II), 1952, 19, H77, 84; (b) Elemicine E (II), 1944, 6, H 1131, 1093; (c) Allyltetramethoxybenzene E (II), 1944, 6, H 1161, 1124; (d) Apiol E (II), 1952, 19, H87–88, 98.

    Google Scholar 

  22. C. Devakumar, V. S. Saxena, and S. K. Mukerjee, Ind. Agric. Biol. Chem., 1985, 49, 725.

    CAS  Google Scholar 

  23. F. Dallacker, Chem. Ber., 1969, 102, 2663.

    Article  CAS  Google Scholar 

  24. G. Ciamician and P. Silber, Chem. Ber., 1896, 29, 1799.

    Article  CAS  Google Scholar 

  25. J. Ginsberg, Chem. Ber., 1888, 21, 1193.

    Google Scholar 

  26. US Pat. 3852305, Chem. Abstrs, 1972, 77, 61540n.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Semenov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2364–2371, December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenov, V.V., Rusak, V.V., Chartov, E.M. et al. Polyalkoxybenzenes from plant raw materials 1. Isolation of polyalkoxybenzenes from CO2 extracts of Umbelliferae plant seeds. Russ Chem Bull 56, 2448–2455 (2007). https://doi.org/10.1007/s11172-007-0389-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-007-0389-1

Key words

Navigation