Log in

Meta-omics approaches to understand and improve wastewater treatment systems

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel high-throughput molecular methods (metagenomics, metatranscriptomics, metaproteomics, metabolomics) are providing detailed knowledge on the microorganisms governing wastewater treatment systems and on their metabolic capabilities. The genomes of uncultured microbes with key roles in wastewater treatment plants (WWTP), such as the polyphosphate-accumulating microorganism “Candidatus Accumulibacter phosphatis”, the nitrite oxidizer “Candidatus Nitrospira defluvii” or the anammox bacterium “Candidatus Kuenenia stuttgartiensis” are now available through metagenomic studies. Metagenomics allows to genetically characterize full-scale WWTP and provides information on the lifestyles and physiology of key microorganisms for wastewater treatment. Integrating metagenomic data of microorganisms with metatranscriptomic, metaproteomic and metabolomic information provides a better understanding of the microbial responses to perturbations or environmental variations. Data integration may allow the creation of predictive behavior models of wastewater ecosystems, which could help in an improved exploitation of microbial processes. This review discusses the impact of meta-omic approaches on the understanding of wastewater treatment processes, and the implications of these methods for the optimization and design of wastewater treatment bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abram F, Enright AM, O’Reilly J, Botting CH, Collins G, O’Flaherty V (2011) A metaproteomic approach gives functional insights into anaerobic digestion. J Appl Microbiol 110:1550–1560. doi:10.1111/j.1365-2672.2011.05011.x

    CAS  Google Scholar 

  • Albertsen M, Hansen LB, Saunders AM, Nielsen PH, Nielsen KL (2012) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6:1094–1106. doi:10.1038/ismej.2011.176

    CAS  Google Scholar 

  • Albertsen M, Saunders AM, Nielsen KL, Nielsen PH (2013) Metagenomes obtained by ‘deep sequencing’—what do they tell about the enhanced biological phosphorus removal communities? Water Sci Technol 68:1959–1968. doi:10.2166/wst.2013.441

    CAS  Google Scholar 

  • Anderson I, Ulrich LE, Lupa B, Susanti D, Porat I, Hooper SD, Lykidis A, Sieprawska-Lupa M, Dharmarajan L, Goltsman E, Lapidus A, Saunders E, Han C, Land M, Lucas S, Mukhopadhyay B, Whitman WB, Woese C, Bristow J, Kyrpides N (2009a) Genomic characterization of methanomicrobiales reveals three classes of methanogens. PLoS ONE 4:e5797. doi:10.1371/journal.pone.0005797

    Google Scholar 

  • Anderson IJ, Sieprawska-Lupa M, Lapidus A, Nolan M, Copeland A, Del Rio TG, Tice H, Dalin E, Barry K, Saunders E, Han C, Brettin T, Detter JC, Bruce D, Mikhailova N, Pitluck S, Hauser L, Land M, Lucas S, Richardson P, Whitman WB (2009b) Kyrpides NCComplete genome sequence of Methanoculleus marisnigri Romesser et al. 1981 type strain JR1. Stand Genomic Sci 1:189–196. doi:10.4056/sigs.32535

    Google Scholar 

  • Aoi Y, Shiramasa Y, Tsuneda S, Hirata A, Kitayama A, Nagamune T (2002) Real-time monitoring of ammonia-oxidizing activity in a nitrifying biofilm by amoA mRNA analysis. Water Sci Technol 46(1–2):439–442

    CAS  Google Scholar 

  • Aoi Y, Shiramasa Y, Masaki Y, Tsuneda S, Hirata A, Kitayama A, Nagamune T (2004) Expression of amoA mRNA in wastewater treatment processes examined by competitive RT-PCR. J Biotechnol 111(2):111–120

    CAS  Google Scholar 

  • Arp DJ, Chain PS, Klotz MG (2007) The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 61:503–528

    CAS  Google Scholar 

  • Aziz RK, Breitbart M, Edwards RA (2010) Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 38:4207–4217. doi:10.1093/nar/gkq140

    CAS  Google Scholar 

  • Bakken LR, Bergaust L, Liu B, Frostegard A (2012) Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos Trans R Soc Lond B Biol Sci 367:1226–1234. doi:10.1098/rstb.2011.0321

    CAS  Google Scholar 

  • Bapteste E, Brochier C, Boucher Y (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea (Vancouver, BC) 1:353–363

    CAS  Google Scholar 

  • Barr JJ, Slater FR, Fukushima T, Bond PL (2010) Evidence for bacteriophage activity causing community and performance changes in a phosphorus-removal activated sludge. FEMS Microbiol Ecol 74:631–642. doi:10.1111/j.1574-6941.2010.00967.x

    CAS  Google Scholar 

  • Beaumont HJ, Lens SI, Reijnders WN, Westerhoff HV, van Spanning RJ (2004) Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor. Mol Microbiol 54(1):148–158

    CAS  Google Scholar 

  • Berube PM, Stahl DA (2012) The divergent AmoC3 subunit of ammonia monooxygenase functions as part of a stress response system in Nitrosomonas europaea. J Bacteriol 194(13):3448–3456

    CAS  Google Scholar 

  • Bollmann A, Sedlacek CJ, Norton J, Laanbroek HJ, Suwa Y, Stein LY, Klotz MG, Arp D, Sayavedra-Soto L, Lu M, Bruce D, Detter C, Tapia R, Han J, Woyke T, Lucas SM, Pitluck S, Pennacchio L, Nolan M, Land ML, Huntemann M, Deshpande S, Han C, Chen A, Kyrpides N, Mavromatis K, Markowitz V, Szeto E, Ivanova N, Mikhailova N, Pagani I, Pati A, Peters L, Ovchinnikova G, Goodwin LA (2013) Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations. Stand Genomic Sci 7(3):469–482

    CAS  Google Scholar 

  • Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms using metatranscriptomics. mBio 2:e00012-00011. doi:10.1128/mBio.00012-11

  • Bouchez T, Patureau D, Delgenes JP, Moletta R (2009) Successful bacterial incorporation into activated sludge flocs using alginate. Bioresour Technol 100:1031–1032. doi:10.1016/j.biortech.2008.07.028

    CAS  Google Scholar 

  • Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp D (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185(9):2759–2773

    CAS  Google Scholar 

  • Chartrain M, Zeikus JG (1986) Microbial ecophysiology of whey biomethanation: characterization of bacterial trophic populations and prevalent species in continuous culture. Appl Environ Microbiol 51:188–196

    CAS  Google Scholar 

  • Chistoserdova L (2010) Recent progress and new challenges in metagenomics for biotechnology. Biotechnol Lett 32:1351–1359. doi:10.1007/s10529-010-0306-9

    CAS  Google Scholar 

  • Colliver BB, Stephenson T (2000) Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol Adv 18(3):219–232

    CAS  Google Scholar 

  • Dabert P, Delgenes JP, Godon JJ (2005) Monitoring the impact of bioaugmentation on the start up of biological phosphorus removal in a laboratory scale activated sludge ecosystem. Appl Microbiol Biotechnol 66:575–588. doi:10.1007/s00253-004-1726-z

    CAS  Google Scholar 

  • Daims H, Taylor MW, Wagner M (2006) Wastewater treatment: a model system for microbial ecology. Trends Biotechnol 24:483–489. doi:10.1016/j.tibtech.2006.09.002

    CAS  Google Scholar 

  • Duque AF, Bessa VS, Carvalho MF, de Kreuk MK, van Loosdrecht MC, Castro PM (2011) 2-fluorophenol degradation by aerobic granular sludge in a sequencing batch reactor. Water Res 45:6745–6752. doi:10.1016/j.watres.2011.10.033

    CAS  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, **g H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542. doi:10.1101/gr.223902

    CAS  Google Scholar 

  • Gori F, Tringe SG, Kartal B, Marchiori E, Jetten MS (2011) The metagenomic basis of anammox metabolism in Candidatus ‘Brocadia fulgida’. Biochem Soc Trans 39:1799–1804. doi:10.1042/BST20110707

    CAS  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    CAS  Google Scholar 

  • Harhangi HR, Le Roy M, van Alen T, Hu BL, Groen J, Kartal B, Tringe SG, Quan ZX, Jetten MS, Op den Camp HJ (2012) Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Appl Environ Microbiol 78:752–758. doi:10.1128/aem.07113-11

    CAS  Google Scholar 

  • Hauser LJ, Land ML, Brown SD, Larimer F, Keller KL, Rapp-Giles BJ, Price MN, Lin M, Bruce DC, Detter JC, Tapia R, Han CS, Goodwin LA, Cheng JF, Pitluck S, Copeland A, Lucas S, Nolan M, Lapidus AL, Palumbo AV, Wall JD (2011) Complete genome sequence and updated annotation of Desulfovibrio alaskensis G20. J Bacteriol 193:4268–4269. doi:10.1128/JB.05400-11

    CAS  Google Scholar 

  • He S, McMahon KD (2011) ‘Candidatus Accumulibacter’ gene expression in response to dynamic EBPR conditions. ISME J 5:329–340. doi:10.1038/ismej.2010.127

    CAS  Google Scholar 

  • He S, Kunin V, Haynes M, Martin HG, Ivanova N, Rohwer F, Hugenholtz P, McMahon KD (2010) Metatranscriptomic array analysis of ‘Candidatus Accumulibacter phosphatis’-enriched enhanced biological phosphorus removal sludge. Environ Microbiol 12:1205–1217. doi:10.1111/j.1462-2920.2010.02163.x

    CAS  Google Scholar 

  • Hendrickson EL, Haydock AK, Moore BC, Whitman WB, Leigh JA (2007) Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea. Proc Natl Acad Sci USA 104:8930–8934. doi:10.1073/pnas.0701157104

    CAS  Google Scholar 

  • Hira D, Toh H, Migita CT, Okubo H, Nishiyama T, Hattori M, Furukawa K, Fujii T (2012) Anammox organism KSU-1 expresses a NirK-type copper-containing nitrite reductase instead of a NirS-type with cytochrome cd1. FEBS Lett 586:1658–1663. doi:10.1016/j.febslet.2012.04.041

    CAS  Google Scholar 

  • Hu Z, Speth DR, Francoijs KJ, Quan ZX, Jetten MS (2012) Metagenome analysis of a complex community reveals the metabolic blueprint of Anammox Bacterium “Candidatus Jettenia asiatica”. Front Microbiol 3:366. doi:10.3389/fmicb.2012.00366

    Google Scholar 

  • Ikeda-Ohtsubo W, Miyahara M, Kim SW, Yamada T, Matsuoka M, Watanabe A, Fushinobu S, Wakagi T, Shoun H, Miyauchi K, Endo G (2013) Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2. J Biosci Bioeng 115:37–42. doi:10.1016/j.jbiosc.2012.08.015

    CAS  Google Scholar 

  • Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M, Gartemann KH, Junemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Puhler A, Schluter A, Goesmann A (2011) Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS ONE 6:e14519. doi:10.1371/journal.pone.0014519

    CAS  Google Scholar 

  • Jenkins D (2008) From total suspended solids to molecular biology tools—a personal view of biological wastewater treatment process population dynamics. Water Environ Res 80:677–687

    CAS  Google Scholar 

  • Kartal B, van Niftrik L, Rattray J, van de Vossenberg JL, Schmid MC, Sinninghe Damste J, Jetten MS, Strous M (2008) Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63:46–55. doi:10.1111/j.1574-6941.2007.00408.x

    CAS  Google Scholar 

  • Kawakoshi A, Nakazawa H, Fukada J, Sasagawa M, Katano Y, Nakamura S, Hosoyama A, Sasaki H, Ichikawa N, Hanada S, Kamagata Y, Nakamura K, Yamazaki S, Fujita N (2012) Deciphering the genome of polyphosphate accumulating actinobacterium Microlunatus phosphovorus. DNA Res 19:383–394. doi:10.1093/dnares/dss020

    CAS  Google Scholar 

  • Keller KL, Wall JD (2011) Genetics and molecular biology of the electron flow for sulfate respiration in Desulfovibrio. Front Microbiol 2:135. doi:10.3389/fmicb.2011.00135

    CAS  Google Scholar 

  • Keller KL, Rapp-Giles BJ, Semkiw ES, Porat I, Brown SD, Wall JD (2014) New model for electron flow for sulfate reduction in Desulfovibrio alaskensis G20. Appl Environ Microbiol 80:855–868. doi:10.1128/aem.02963-13

    Google Scholar 

  • Kirstein K, Bock E (1993) Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases. Arch Microbiol 160(6):447–453

    CAS  Google Scholar 

  • Klotz MG, Arp DJ, Chain PS, El-Sheikh AF, Hauser LJ, Hommes NG, Larimer FW, Malfatti SA, Norton JM, Poret-Peterson AT, Vergez LM, Ward BB (2006) Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol 72(9):6299–6315

    CAS  Google Scholar 

  • Kristiansen R, Nguyen HT, Saunders AM, Nielsen JL, Wimmer R, Le VQ, McIlroy SJ, Petrovski S, Seviour RJ, Calteau A, Nielsen KL, Nielsen PH (2013) A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal. ISME J 7:543–554. doi:10.1038/ismej.2012.136

    CAS  Google Scholar 

  • Kuhn R, Benndorf D, Rapp E, Reichl U, Palese LL, Pollice A (2011) Metaproteome analysis of sewage sludge from membrane bioreactors. Proteomics 11:2738–2744. doi:10.1002/pmic.201000590

    CAS  Google Scholar 

  • Kunin V, He S, Warnecke F, Peterson SB, Garcia Martin H, Haynes M, Ivanova N, Blackall LL, Breitbart M, Rohwer F, McMahon KD, Hugenholtz P (2008) A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Res 18:293–297. doi:10.1101/gr.6835308

    CAS  Google Scholar 

  • Kuo DH, Robinson KG, Layton AC, Meyers AJ, Sayler GS (2006) Real-time PCR quantification of ammonia-oxidizing bacteria (AOB): solids retention time (SRT) impacts during activated sludge treatment of industrial wastewater. Environ Eng Sci 23(3):507–520

    CAS  Google Scholar 

  • Kuo DH, Robinson KG, Layton AC, Meyers AJ, Sayler GS (2010) Transcription levels (amoA mRNA-based) and population dominance (amoA gene-based) of ammonia-oxidizing bacteria. J Ind Microbiol Biotechnol 37(7):751–757

    CAS  Google Scholar 

  • Lacerda CM, Choe LH, Reardon KF (2007) Metaproteomic analysis of a bacterial community response to cadmium exposure. J Proteome Res 6:1145–1152. doi:10.1021/pr060477v

    CAS  Google Scholar 

  • Lenz M, Enright AM, O’Flaherty V, van Aelst AC, Lens PN (2009) Bioaugmentation of UASB reactors with immobilized Sulfurospirillum barnesii for simultaneous selenate and nitrate removal. Appl Microbiol Biotechnol 83:377–388. doi:10.1007/s00253-009-1915-x

    CAS  Google Scholar 

  • Liu B, Frostegard A, Shapleigh JP (2013) Draft genome sequences of five strains in the genus Thauera. Genome Announc. doi:10.1128/genomeA.00052-12

    Google Scholar 

  • Lo I, Denef VJ, Verberkmoes NC, Shah MB, Goltsman D, DiBartolo G, Tyson GW, Allen EE, Ram RJ, Detter JC, Richardson P, Thelen MP, Hettich RL, Banfield JF (2007) Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446:537–541. doi:10.1038/nature05624

    CAS  Google Scholar 

  • Lucker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damste JS, Spieck E, Le Paslier D, Daims H (2010) A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA 107:13479–13484. doi:10.1073/pnas.1003860107

    Google Scholar 

  • Lucker S, Nowka B, Rattei T, Spieck E, Daims H (2013) The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front Microbiol 4:27. doi:10.3389/fmicb.2013.00027

    Google Scholar 

  • Lykidis A, Chen CL, Tringe SG, McHardy AC, Copeland A, Kyrpides NC, Hugenholtz P, Macarie H, Olmos A, Monroy O, Liu WT (2011) Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. ISME J 5:122–130. doi:10.1038/ismej.2010.125

    CAS  Google Scholar 

  • Maphosa F, van Passel MWJ, de Vos WM, Smidt H (2012) Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in co-culture with Sedimentibacter sp. Environ Microbiol Rep 4:604–616. doi:10.1111/j.1758-2229.2012.00376.x

    CAS  Google Scholar 

  • Martin HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269. doi:10.1038/nbt1247

    CAS  Google Scholar 

  • Maus I, Wibberg D, Stantscheff R, Eikmeyer FG, Seffner A, Boelter J, Szczepanowski R, Blom J, Jaenicke S, Konig H, Puhler A, Schluter A (2012) Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2(T), Isolated from a sewage sludge digester. J Bacteriol 194:5487–5488. doi:10.1128/JB.01292-12

    CAS  Google Scholar 

  • McIlroy SJ, Kristiansen R, Albertsen M, Karst SM, Rossetti S, Nielsen JL, Tandoi V, Seviour RJ, Nielsen PH (2013) Metabolic model for the filamentous ‘Candidatus Microthrix parvicella’ based on genomic and metagenomic analyses. ISME J 7(6):1161–1172. doi:10.1038/ismej.2013.6

  • McMahon KD, Martin HG, Hugenholtz P (2007) Integrating ecology into biotechnology. Curr Opin Biotechnol 18:287–292. doi:10.1016/j.copbio.2007.04.007

    CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46. doi:10.1038/nrg2626

    CAS  Google Scholar 

  • Mino T, Satoh H (2006) Wastewater genomics. Nat Biotech 24:1229–1230

    CAS  Google Scholar 

  • Miura T, Kusada H, Kamagata Y, Hanada S, Kimura N (2013) Genome sequence of the multiple-beta-lactam-antibiotic-resistant bacterium Acidovorax sp. strain MR-S7. Genome Announc. doi:10.1128/genomeA.00412-13

    Google Scholar 

  • Muller EE, Pinel N, Gillece JD, Schupp JM, Price LB, Engelthaler DM, Levantesi C, Tandoi V, Luong K, Baliga NS, Korlach J, Keim PS, Wilmes P (2012) Genome sequence of ‘Candidatus Microthrix parvicella’ Bio17-1, a long-chain-fatty-acid-accumulating filamentous actinobacterium from a biological wastewater treatment plant. J Bacteriol 194:6670–6671. doi:10.1128/JB.01765-12

    CAS  Google Scholar 

  • Nielsen PH, Mielczarek AT, Kragelund C, Nielsen JL, Saunders AM, Kong Y, Hansen AA, Vollertsen J (2010) A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res 44:5070–5088. doi:10.1016/j.watres.2010.07.036

    CAS  Google Scholar 

  • Norton JM, Klotz MG, Stein LY, Arp DJ, Bottomley PJ, Chain PS, Hauser LJ, Land ML, Larimer FW, Shin MW, Starkenburg SR (2008) Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol 74(11):3559–3572

    CAS  Google Scholar 

  • Odom JM, Peck HD (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett 12:47–50. doi:10.1111/j.1574-6968.1981.tb07609.x

    CAS  Google Scholar 

  • Oehmen A, Lopez-Vazquez CM, Carvalho G, Reis MA, van Loosdrecht MC (2010) Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes. Water Res 44:4473–4486. doi:10.1016/j.watres.2010.06.017

    CAS  Google Scholar 

  • Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, Riviere D, Ganesan A, Daegelen P, Sghir A, Cohen GN, Medigue C, Weissenbach J, Le Paslier D (2008) “Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190:2572–2579. doi:10.1128/JB.01248-07

    CAS  Google Scholar 

  • Pereira IA, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS (2011) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2:69. doi:10.3389/fmicb.2011.00069

    CAS  Google Scholar 

  • Plugge CM, Zhang W, Scholten JC, Stams AJ (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81. doi:10.3389/fmicb.2011.00081

    CAS  Google Scholar 

  • Plugge CM, Henstra AM, Worm P, Swarts DC, Paulitsch-Fuchs AH, Scholten JC, Lykidis A, Lapidus AL, Goltsman E, Kim E, McDonald E, Rohlin L, Crable BR, Gunsalus RP, Stams AJ, McInerney MJ (2012) Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOB(T)). Stand Genomic Sci 7:91–106. doi:10.4056/sigs.2996379

    CAS  Google Scholar 

  • Potter LC, Millington P, Griffiths L, Thomas GH, Cole JA (1999) Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Biochem J 344(Pt 1):77–84

    CAS  Google Scholar 

  • Ramos AR, Keller KL, Wall JD, Pereira IA (2012) The membrane QmoABC complex interacts directly with the dissimilatory adenosine 5′-phosphosulfate reductase in sulfate reducing bacteria. Front Microbiol 3:137. doi:10.3389/fmicb.2012.00137

    CAS  Google Scholar 

  • Richardson DJ (2000) Bacterial respiration: a flexible process for a changing environment. Microbiology 146(Pt 3):551–571

    CAS  Google Scholar 

  • Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS (2005) Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 1:e55. doi:10.1371/journal.pcbi.0010055

    Google Scholar 

  • Roh SW, Abell GC, Kim KH, Nam YD, Bae JW (2010) Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol 28:291–299. doi:10.1016/j.tibtech.2010.03.001

    CAS  Google Scholar 

  • Roling WF, Ferrer M, Golyshin PN (2010) Systems approaches to microbial communities and their functioning. Curr Opin Biotechnol 21:532–538. doi:10.1016/j.copbio.2010.06.007

    Google Scholar 

  • Russ L, Kartal B, Op den Camp HJ, Sollai M, Le Bruchec J, Caprais JC, Godfroy A, Sinninghe Damste JS, Jetten MS (2013) Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin. Front Microbiol 4:219. doi:10.3389/fmicb.2013.00219

    Google Scholar 

  • Sanapareddy N, Hamp TJ, Gonzalez LC, Hilger HA, Fodor AA, Clinton SM (2009) Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing. Appl Environ Microbiol 75:1688–1696. doi:10.1128/AEM.01210-08

    CAS  Google Scholar 

  • Schink B, Stams AJM (2013) Syntrophism among prokaryotes. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 471–493. doi:10.1007/978-3-642-30123-0_59

  • Schluter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Kromeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Puhler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehover P, Goesmann A (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136:77–90. doi:10.1016/j.jbiotec.2008.05.008

    Google Scholar 

  • Schneider T, Riedel K (2010) Environmental proteomics: analysis of structure and function of microbial communities. Proteomics 10:785–798. doi:10.1002/pmic.200900450

    CAS  Google Scholar 

  • Schuster M, Conrad R (1992) Metabolism of nitric oxide and nitrous oxide during nitrification and denitrification in soil at different incubation conditions. FEMS Microbiol Ecol 10:133–143. doi:10.1111/j.1574-6941.1992.tb00007.x

    Google Scholar 

  • Seviour RJ, Kragelund C, Kong Y, Eales K, Nielsen JL, Nielsen PH (2008) Ecophysiology of the Actinobacteria in activated sludge systems. Antonie Van Leeuwenhoek 94:21–33. doi:10.1007/s10482-008-9226-2

    Google Scholar 

  • Shi K, Zhou W, Zhao H, Zhang Y (2012) Performance of halophilic marine bacteria inocula on nutrient removal from hypersaline wastewater in an intermittently aerated biological filter. Bioresour Technol 113:280–287. doi:10.1016/j.biortech.2012.01.117

    CAS  Google Scholar 

  • Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452. doi:10.1146/annurev-micro-090110-102844

    CAS  Google Scholar 

  • Silva CC, Jesus EC, Torres AP, Sousa MP, Santiago VM, Oliveira VM (2010) Investigation of bacterial diversity in membrane bioreactor and conventional activated sludge processes from petroleum refineries using phylogenetic and statistical approaches. J Microbiol Biotechnol 20:447–459

    CAS  Google Scholar 

  • Silva CC, Hayden H, Sawbridge T, Mele P, Kruger RH, Rodrigues MV, Costa GG, Vidal RO, Sousa MP, Torres AP, Santiago VM, Oliveira VM (2012) Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system. AMB Express 2:18. doi:10.1186/2191-0855-2-18

    Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161. doi:10.1128/AEM.02345-10

    CAS  Google Scholar 

  • Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11:9–16. doi:10.1038/nrg2695

    CAS  Google Scholar 

  • Sorokin DY, Lucker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WI, Damste JS, Le Paslier D, Muyzer G, Wagner M, van Loosdrecht MC, Daims H (2012) Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J 6:2245–2256. doi:10.1038/ismej.2012.70

    CAS  Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978

    CAS  Google Scholar 

  • Speth DR, Hu B, Bosch N, Keltjens JT, Stunnenberg HG, Jetten MS (2012) Comparative genomics of two independently enriched “Candidatus Kuenenia Stuttgartiensis” anammox bacteria. Front Microbiol 3:307. doi:10.3389/fmicb.2012.00307

    Google Scholar 

  • Starkenburg SR, Chain PS, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW, Malfatti SA, Klotz MG, Bottomley PJ, Arp DJ, Hickey WJ (2006) Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Appl Environ Microbiol 72(3):2050–2063

    CAS  Google Scholar 

  • Stein LY, Arp DJ, Berube PM, Chain PS, Hauser L, Jetten MS, Klotz MG, Larimer FW, Norton JM, Op den Camp HJ, Shin M, Wei X (2007) Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol 9:2993–3007. doi:10.1111/j.1462-2920.2007.01409.x

    CAS  Google Scholar 

  • Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794. doi:10.1038/nature04647

    Google Scholar 

  • Suwa Y, Norton JM, Bollmann A, Klotz MG, Stein LY, Laanbroek HJ, Arp DJ, Goodwin LA, Chertkov O, Held B, Bruce D, Detter JC, Detter JC, Tapia R, Han CS (2011) Genome sequence of Nitrosomonas sp. strain AL212, an ammonia-oxidizing bacterium sensitive to high levels of ammonia. J Bacteriol 193:5047–5048. doi:10.1128/jb.05521-11

    Google Scholar 

  • Thomas GH, Zucker J, Macdonald SJ, Sorokin A, Goryanin I, Douglas AE (2009) A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola. BMC Syst Biol 3:24. doi:10.1186/1752-0509-3-24

    Google Scholar 

  • Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324. doi:10.1128/AEM.71.10.6319-6324.2005

    CAS  Google Scholar 

  • van de Vossenberg J, Woebken D, Maalcke WJ, Wessels HJ, Dutilh BE, Kartal B, Janssen-Megens EM, Roeselers G, Yan J, Speth D, Gloerich J, Geerts W, van der Biezen E, Pluk W, Francoijs KJ, Russ L, Lam P, Malfatti SA, Tringe SG, Haaijer SC, Op den Camp HJ, Stunnenberg HG, Amann R, Kuypers MM, Jetten MS (2013) The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol 15:1275–1289. doi:10.1111/j.1462-2920.2012.02774.x

    Google Scholar 

  • van der Star WR, Abma WR, Blommers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, van Loosdrecht MC (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41:4149–4163. doi:10.1016/j.watres.2007.03.044

    Google Scholar 

  • van der Star WR, Miclea AI, van Dongen UG, Muyzer G, Picioreanu C, van Loosdrecht MC (2008) The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101:286–294. doi:10.1002/bit.21891

    Google Scholar 

  • Wagner M, Smidt H, Loy A, Zhou J (2007) Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microb Ecol 53:498–506. doi:10.1007/s00248-006-9197-7

    CAS  Google Scholar 

  • Walker CB, Redding-Johanson AM, Baidoo EE, Rajeev L, He Z, Hendrickson EL, Joachimiak MP, Stolyar S, Arkin AP, Leigh JA, Zhou J, Keasling JD, Mukhopadhyay A, Stahl DA (2012) Functional responses of methanogenic archaea to syntrophic growth. ISME J 6:2045–2055. doi:10.1038/ismej.2012.60

    CAS  Google Scholar 

  • Wexler M, Richardson DJ, Bond PL (2009) Radiolabelled proteomics to determine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal. Environ Microbiol 11:3029–3044. doi:10.1111/j.1462-2920.2009.02007.x

    CAS  Google Scholar 

  • Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6:911–920. doi:10.1111/j.1462-2920.2004.00687.x

    CAS  Google Scholar 

  • Wilmes P, Bond PL (2006a) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14:92–97. doi:10.1016/j.tim.2005.12.006

    CAS  Google Scholar 

  • Wilmes P, Bond PL (2006b) Towards exposure of elusive metabolic mixed-culture processes: the application of metaproteomic analyses to activated sludge. Water Sci Technol 54:217. doi:10.2166/wst.2006.390

    CAS  Google Scholar 

  • Wilmes P, Andersson AF, Lefsrud MG, Wexler M, Shah M, Zhang B, Hettich RL, Bond PL, VerBerkmoes NC, Banfield JF (2008a) Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal. ISME J 2:853–864. doi:10.1038/ismej.2008.38

    CAS  Google Scholar 

  • Wilmes P, Wexler M, Bond PL (2008b) Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE 3:e1778. doi:10.1371/journal.pone.0001778

    Google Scholar 

  • Wirth R, Kovacs E, Maroti G, Bagi Z, Rakhely G, Kovacs KL (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41. doi:10.1186/1754-6834-5-41

    CAS  Google Scholar 

  • Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6:e1000667. doi:10.1371/journal.pcbi.1000667

    Google Scholar 

  • Worm P, Koehorst JJ, Visser M, Sedano-Nunez VT, Schaap PJ, Plugge CM, Sousa DZ, Stams AJ (2014) A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities. Biochim Biophys Acta 1837:2004–2016. doi:10.1016/j.bbabio.2014.06.005

    CAS  Google Scholar 

  • Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H (2012) Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res 46(4):1027–1037

    CAS  Google Scholar 

  • **a Q, Wang T, Hendrickson EL, Lie TJ, Hackett M, Leigh JA (2009) Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis. BMC Microbiol 9:149. doi:10.1186/1471-2180-9-149

    Google Scholar 

  • Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS ONE 7:e38183. doi:10.1371/journal.pone.0038183

    CAS  Google Scholar 

  • Zhou J, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou A, He Z, Van Nostrand JD, Hazen TC, Stahl DA, Wall JD, Arkin AP (2011) How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol 9:452–466. doi:10.1038/nrmicro2575

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Ministry of Education and Science (Contract Project CTQ2007-64324 and CONSOLIDER-CSD 2007-00055) and the Regional Government of Castilla y Leon (Ref. VA038A07). Research of AJMS is supported by the European Research Council (Grant 323009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Rodríguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, E., García-Encina, P.A., Stams, A.J.M. et al. Meta-omics approaches to understand and improve wastewater treatment systems. Rev Environ Sci Biotechnol 14, 385–406 (2015). https://doi.org/10.1007/s11157-015-9370-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-015-9370-x

Keywords

Navigation